Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julia Starega-Roslan is active.

Publication


Featured researches published by Julia Starega-Roslan.


Nucleic Acids Research | 2011

Structural basis of microRNA length variety

Julia Starega-Roslan; Jacek Krol; Edyta Koscianska; Piotr Kozlowski; Wojciech J. Szlachcic; Krzysztof Sobczak; Wlodzimierz J. Krzyzosiak

The biogenesis of human microRNAs (miRNAs) includes two RNA cleavage steps in which the activities of the RNases Drosha and Dicer are involved. miRNAs of diverse lengths are generated from different genes, and miRNAs that are heterogeneous in length are produced from a single miRNA gene. We determined the solution structures of many miRNA precursors and analysed the structural basis of miRNA length diversity using a new measure: the weighted average length of diced RNA (WALDI). We found that asymmetrical structural motifs present in precursor hairpins are primarily responsible for the length diversity of miRNAs generated by Dicer. High-resolution northern blots of miRNAs and their precursors revealed that both Dicer and Drosha cleavages of imperfect specificity contributed to the miRNA length heterogeneity. The relevance of these findings to the dynamics of the dicing complex, mRNA regulation by miRNA, RNA interference and miRNA technologies are discussed.


Cellular and Molecular Life Sciences | 2011

The role of the precursor structure in the biogenesis of microRNA

Julia Starega-Roslan; Edyta Koscianska; Piotr Kozlowski; Wlodzimierz J. Krzyzosiak

The human genome contains more than 1,000 microRNA (miRNA) genes, which are transcribed mainly by RNA polymerase II. The canonical pathway of miRNA biogenesis includes the nuclear processing of primary transcripts (pri-miRNAs) by the ribonuclease Drosha and further cytoplasmic processing of pre-miRNAs by the ribonuclease Dicer. This review discusses the issue of miRNA end heterogeneity generated primarily by Drosha and Dicer cleavage and focuses on the structural aspects of the Dicer step of miRNA biogenesis. We examine the structures of miRNA precursors, both predicted and experimentally determined, as well as the influence of various motifs that disturb the regularity of pre-miRNA structure on Dicer cleavage specificity. We evaluate the structural determinants of the length diversity of miRNA generated by Dicer from different precursors and highlight the importance of asymmetrical motifs. Finally, we discuss the impact of Dicer protein partners on cleavage efficiency and specificity and propose the contribution of pre-miRNA structural plasticity to the dynamics of the dicing complex.


PLOS ONE | 2011

The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors

Edyta Koscianska; Julia Starega-Roslan; Wlodzimierz J. Krzyzosiak

One of the cellular functions of the ribonuclease Dicer is to process microRNA precursors (pre-miRNAs) into mature microRNAs (miRNAs). Human Dicer performs this function in cooperation with its protein partners, AGO2, PACT and TRBP. The exact role of these accessory proteins in Dicer activity is still poorly understood. In this study, we used the northern blotting technique to investigate pre-miRNA cleavage efficiency and specificity after depletion of AGO2, PACT and TRBP by RNAi. The results showed that the inhibition of either Dicer protein partner substantially affected not only miRNA levels but also pre-miRNA levels, and it had a rather minor effect on the specificity of Dicer cleavage. The analysis of the Dicer cleavage products generated in vitro revealed the presence of a cleavage intermediate when pre-miRNA was processed by recombinant Dicer alone. This intermediate was not observed during pre-miRNA cleavage by endogenous Dicer. We demonstrate that AGO2, PACT and TRBP were required for the efficient functioning of Dicer in cells, and we suggest that one of the roles of these proteins is to assure better synchronization of cleavages triggered by two RNase III domains of Dicer.


The Scientific World Journal | 2011

High-resolution northern blot for a reliable analysis of microRNAs and their precursors.

Edyta Koscianska; Julia Starega-Roslan; Katarzyna Czubala; Wlodzimierz J. Krzyzosiak

This protocol describes how to perform northern blot analyses to detect microRNAs and their precursors with single-nucleotide resolution, which is crucial for analyzing individual length variants and for evaluating relative quantities of unique microRNAs in cells. Northern blot analysis consists of resolving RNAs by gel electrophoresis, followed by transferring and fixing to nylon membranes as well as detecting by hybridization with radioactive probes. Earlier efforts to improve this method focused mainly on altering the sensitivity of short RNA detection. We have enhanced the resolution of the northern blot technique by optimizing the electrophoresis step. We have also investigated other steps of the procedure with the goal of enhancing the resolution of RNAs; herein, we present several recommendations to do so. Our protocol is applicable to analyses of all kinds of endogenous and exogenous RNAs, falling within length ranges of 20–30 and 50–70 nt, corresponding to microRNA and pre-microRNA lengths, respectively.


BMC Molecular Biology | 2011

Northern blotting analysis of microRNAs, their precursors and RNA interference triggers

Edyta Koscianska; Julia Starega-Roslan; Lukasz J Sznajder; Marta Olejniczak; Paulina Galka-Marciniak; Wlodzimierz J. Krzyzosiak

BackgroundNumerous microRNAs (miRNAs) have heterogeneous ends resulting from imprecise cleavages by processing nucleases and from various non-templated nucleotide additions. The scale of miRNA end-heterogeneity is best shown by deep sequencing data revealing not only the major miRNA variants but also those that occur in only minute amounts and are unlikely to be of functional importance. All RNA interference (RNAi) technology reagents that are expressed and processed in cells are also exposed to the same machinery generating end-heterogeneity of the released short interfering RNAs (siRNAs) or miRNA mimetics.ResultsIn this study we have analyzed endogenous and exogenous RNAs in the range of 20-70 nt by high-resolution northern blotting. We have validated the results obtained with northern blotting by comparing them with data derived from miRNA deep sequencing; therefore we have demonstrated the usefulness of the northern blotting technique in the investigation of miRNA biogenesis, as well as in the characterization of RNAi technology reagents.ConclusionsThe conventional northern blotting enhanced to high resolution may be a useful adjunct to other miRNA discovery, detection and characterization methods. It provides quantitative data on distribution of major length variants of abundant endogenous miRNAs, as well as on length heterogeneity of RNAi technology reagents expressed in cells.


International Journal of Molecular Sciences | 2015

Sequence Features of Drosha and Dicer Cleavage Sites Affect the Complexity of IsomiRs

Julia Starega-Roslan; Tomasz M. Witkos; Paulina Galka-Marciniak; Wlodzimierz J. Krzyzosiak

The deep-sequencing of small RNAs has revealed that different numbers and proportions of miRNA variants called isomiRs are formed from single miRNA genes and that this effect is attributable mainly to imprecise cleavage by Drosha and Dicer. Factors that influence the degree of cleavage precision of Drosha and Dicer are under investigation, and their identification may improve our understanding of the mechanisms by which cells modulate the regulatory potential of miRNAs. In this study, we focused on the sequences and structural determinants of Drosha and Dicer cleavage sites, which may explain the generation of homogeneous miRNAs (in which a single isomiR strongly predominates) as well as the generation of heterogeneous miRNAs. Using deep-sequencing data for small RNAs, we demonstrate that the generation of homogeneous miRNAs requires more sequence constraints at the cleavage sites than the formation of heterogeneous miRNAs. Additionally, our results indicate that specific Drosha cleavage sites have more sequence determinants in miRNA precursors than specific cleavage sites for Dicer and that secondary structural motifs in the miRNA precursors influence the precision of Dicer cleavage. Together, we present the sequence and structural features of Drosha and Dicer cleavage sites that influence the heterogeneity of the released miRNAs.


Nucleic Acids Research | 2015

Nucleotide sequence of miRNA precursor contributes to cleavage site selection by Dicer.

Julia Starega-Roslan; Paulina Galka-Marciniak; Wlodzimierz J. Krzyzosiak

The ribonuclease Dicer excises mature miRNAs from a diverse group of precursors (pre-miRNAs), most of which contain various secondary structure motifs in their hairpin stem. In this study, we analyzed Dicer cleavage in hairpin substrates deprived of such motifs. We searched for the factors other than the secondary structure, which may influence the length diversity and heterogeneity of miRNAs. We found that the nucleotide sequence at the Dicer cleavage site influences both of these miRNA characteristics. With regard to cleavage mechanism, we demonstrate that the Dicer RNase IIIA domain that cleaves within the 3′ arm of the pre-miRNA is more sensitive to the nucleotide sequence of its substrate than is the RNase IIIB domain. The RNase IIIA domain avoids releasing miRNAs with G nucleotide and prefers to generate miRNAs with a U nucleotide at the 5′ end. We also propose that the sequence restrictions at the Dicer cleavage site might be the factor that contributes to the generation of miRNA duplexes with 3′ overhangs of atypical lengths. This finding implies that the two RNase III domains forming the single processing center of Dicer may exhibit some degree of flexibility, which allows for the formation of these non-standard 3′ overhangs.


Nucleic Acids Research | 2016

Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases

Magdalena Jazurek; Adam Ciesiolka; Julia Starega-Roslan; Katarzyna Bilinska; Wlodzimierz J. Krzyzosiak

RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.


Archive | 2008

Structures of MicroRNA Precursors

Piotr Kozlowski; Julia Starega-Roslan; Marta Legacz; Marcin Magnus; Wlodzimierz J. Krzyzosiak

MicroRNAs are single-stranded regulatory RNAs of 18–25 nucleotide length generated from endogenous transcripts that form local hairpin structures. The processing of microRNA transcripts involves the activities of two RNase III enzymes Drosha and Dicer. In this study we analyzed structural features of human microRNA precursors that make these transcripts Drosha and Dicer substrates. The structures of minimal functional primary precursors (pri-microRNAs) and secondary precursors (pre-microRNAs) were predicted. The frequency, nucleotide sequence content and the localization of various structure destabilizing motifs was analyzed. We identified numerous pri-microRNAs which structures strongly depart from the consensus structure and their processing is hard to explain by the existing model of the Microprocessor complex. We also found a biased distribution of symmetric and asymmetric motifs along the pre-microRNA hairpin stem and an overrepresentation of bulges on its 5′ arm (p < 0.000001), which may have considerable functional implications.


Molecular Biology Reports | 2015

Characterization of a naturally occurring truncated Dicer

Nicola Mosca; Julia Starega-Roslan; Filomena Castiello; Aniello Russo; Wlodzimierz J. Krzyzosiak; Nicoletta Potenza

Dicer is central to small RNA silencing pathways, thus playing an important role in physiological and pathological states. Recently, a number of mutations in dicer gene have been identified in diverse types of cancer, implicating Dicer in oncogenic cooperation. Here we report on the properties of a rare splice variant of the human dicer gene, occurring in neuroblastoma cells, and not detectable in normal tissues. Due to the skipping of one exon, the alternatively spliced transcript encodes a putative truncated protein, t-Dicer, lacking the dsRNA-binding domain and bearing altered one of the two RNase III catalytic centers. The ability of the exon-depleted t-dicer transcript to be translated in vitro was first investigated by the expression of flagged t-Dicer in human cells. We found that t-dicer transcript could be translated in vitro, albeit not as efficiently as full-length dicer transcript. Then, the possible enzymatic activity of t-Dicer was analyzed by an in vitro dicing assay able to distinguish the enzymatic activity of the individual RNase III domains. We showed that t-Dicer preserved partial dicing activity. Overall, the results indicate that t-dicer transcript could produce a protein still able to bind the substrate and to cleave only one of the two pre-miRNA strands. Given the increasing number of mutations reported for dicer gene in tumours, our experimental approach could be useful to characterize the activity of these mutants, which may dictate changes in selected classes of small RNAs and/or lead to their aberrant maturation.

Collaboration


Dive into the Julia Starega-Roslan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edyta Koscianska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Kozlowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Marta Olejniczak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Adam Ciesiolka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Izabela Makalowska

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar

Jacek Krol

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krzysztof Sobczak

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge