Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rameshwar Patil is active.

Publication


Featured researches published by Rameshwar Patil.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inhibition of brain tumor growth by intravenous poly(β-l-malic acid) nanobioconjugate with pH-dependent drug release

Hui Ding; Satoshi Inoue; Alexander V. Ljubimov; Rameshwar Patil; Jose Portilla-Arias; Jinwei Hu; Bindu Konda; Kolja Wawrowsky; Manabu Fujita; Natalya Karabalin; Takako Sasaki; Keith L. Black; Eggehard Holler; Julia Y. Ljubimova

Effective treatment of brain neurological disorders such as Alzheimers disease, multiple sclerosis, or tumors should be possible with drug delivery through blood–brain barrier (BBB) or blood–brain tumor barrier (BTB) and targeting specific types of brain cells with drug release into the cell cytoplasm. A polymeric nanobioconjugate drug based on biodegradable, nontoxic, and nonimmunogenic polymalic acid as a universal delivery nanoplatform was used for design and synthesis of nanomedicine drug for i.v. treatment of brain tumors. The polymeric drug passes through the BTB and tumor cell membrane using tandem monoclonal antibodies targeting the BTB and tumor cells. The next step for polymeric drug action was inhibition of tumor angiogenesis by specifically blocking the synthesis of a tumor neovascular trimer protein, laminin-411, by attached antisense oligonucleotides (AONs). The AONs were released into the target cell cytoplasm via pH-activated trileucine, an endosomal escape moiety. Drug delivery to the brain tumor and the release mechanism were both studied for this nanobiopolymer. Introduction of a trileucine endosome escape unit resulted in significantly increased AON delivery to tumor cells, inhibition of laminin-411 synthesis in vitro and in vivo, specific accumulation in brain tumors, and suppression of intracranial glioma growth compared with pH-independent leucine ester. The availability of a systemically active polymeric drug delivery system that passes through the BTB, targets tumor cells, and inhibits glioma growth gives hope for a successful strategy of glioma treatment. This delivery system with drug release into the brain-specific cell type could be useful for treatment of various brain pathologies.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug.

Hui Ding; Pallavi R. Gangalum; Anna Galstyan; Irving Fox; Rameshwar Patil; Paul A. Hubbard; Julia Y. Ljubimova; Eggehard Holler

HER2+ breast cancer is one of the most aggressive forms of breast cancer. The new polymalic acid-based mini nanodrug copolymers are synthesized and specifically characterized to inhibit growth of HER2+ breast cancer. These mini nanodrugs are highly effective and in the clinic may substitute for trastuzumab (the marketed therapeutic antibody) and antibody-targeted nanobioconjugates. Novel mini nanodrugs are designed to have slender shape and small size. HER2+ cells were recognized by the polymer-attached trastuzumab-mimetic 12-mer peptide. Synthesis of the nascent cell-transmembrane HER2/neu receptors by HER2+ cells was inhibited by antisense oligonucleotides that prevented cancer cell proliferation and significantly reduced tumor size by more than 15 times vs. untreated control or PBS-treated group. We emphasize that the shape and size of mini nanodrugs can enhance penetration of multiple bio-barriers to facilitate highly effective treatment. Replacement of trastuzumab by the mimetic peptide favors reduced production costs and technical efforts, and a negligible immune response.


NeuroImage | 2011

Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy?

Babak Kateb; Katherine Chiu; Keith L. Black; Vicky Yamamoto; Bhavraj Khalsa; Julia Y. Ljubimova; Hui Ding; Rameshwar Patil; Jose Portilla-Arias; Mike Modo; David F. Moore; Keyvan Farahani; Michael S. Okun; Neal Prakash; Josh Neman; Daniel Ahdoot; Warren Grundfest; Shouleh Nikzad; John D. Heiss

Nanotechnology is the design and assembly of submicroscopic devices called nanoparticles, which are 1-100 nm in diameter. Nanomedicine is the application of nanotechnology for the diagnosis and treatment of human disease. Disease-specific receptors on the surface of cells provide useful targets for nanoparticles. Because nanoparticles can be engineered from components that (1) recognize disease at the cellular level, (2) are visible on imaging studies, and (3) deliver therapeutic compounds, nanotechnology is well suited for the diagnosis and treatment of a variety of diseases. Nanotechnology will enable earlier detection and treatment of diseases that are best treated in their initial stages, such as cancer. Advances in nanotechnology will also spur the discovery of new methods for delivery of therapeutic compounds, including genes and proteins, to diseased tissue. A myriad of nanostructured drugs with effective site-targeting can be developed by combining a diverse selection of targeting, diagnostic, and therapeutic components. Incorporating immune target specificity with nanostructures introduces a new type of treatment modality, nano-immunochemotherapy, for patients with cancer. In this review, we will discuss the development and potential applications of nanoscale platforms in medical diagnosis and treatment. To impact the care of patients with neurological diseases, advances in nanotechnology will require accelerated translation to the fields of brain mapping, CNS imaging, and nanoneurosurgery. Advances in nanoplatform, nano-imaging, and nano-drug delivery will drive the future development of nanomedicine, personalized medicine, and targeted therapy. We believe that the formation of a science, technology, medicine law-healthcare policy (STML) hub/center, which encourages collaboration among universities, medical centers, US government, industry, patient advocacy groups, charitable foundations, and philanthropists, could significantly facilitate such advancements and contribute to the translation of nanotechnology across medical disciplines.


Cancer Research | 2011

Polymalic Acid–Based Nanobiopolymer Provides Efficient Systemic Breast Cancer Treatment by Inhibiting both HER2/neu Receptor Synthesis and Activity

Satoshi Inoue; Hui Ding; Jose Portilla-Arias; Jinwei Hu; Bindu Konda; Manabu Fujita; Andres Espinoza; Sonal Suhane; Marisa Riley; Marcus Gates; Rameshwar Patil; Manuel L. Penichet; Alexander V. Ljubimov; Keith L. Black; Eggehard Holler; Julia Y. Ljubimova

Biodegradable nanopolymers are believed to offer great potential in cancer therapy. Here, we report the characterization of a novel, targeted, nanobiopolymeric conjugate based on biodegradable, nontoxic, and nonimmunogenic PMLA [poly(β-l-malic acid)]. The PMLA nanoplatform was synthesized for repetitive systemic treatments of HER2/neu-positive human breast tumors in a xenogeneic mouse model. Various moieties were covalently attached to PMLA, including a combination of morpholino antisense oligonucleotides (AON) directed against HER2/neu mRNA, to block new HER2/neu receptor synthesis; anti-HER2/neu antibody trastuzumab (Herceptin), to target breast cancer cells and inhibit receptor activity simultaneously; and transferrin receptor antibody, to target the tumor vasculature and mediate delivery of the nanobiopolymer through the host endothelial system. The results of the study showed that the lead drug tested significantly inhibited the growth of HER2/neu-positive breast cancer cells in vitro and in vivo by enhanced apoptosis and inhibition of HER2/neu receptor signaling with suppression of Akt phosphorylation. In vivo imaging analysis and confocal microscopy demonstrated selective accumulation of the nanodrug in tumor cells via an active delivery mechanism. Systemic treatment of human breast tumor-bearing nude mice resulted in more than 90% inhibition of tumor growth and tumor regression, as compared with partial (50%) tumor growth inhibition in mice treated with trastuzumab or AON, either free or attached to PMLA. Our findings offer a preclinical proof of concept for use of the PMLA nanoplatform for combination cancer therapy.


International Journal of Molecular Sciences | 2012

Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic Acid)

Rameshwar Patil; Jose Portilla-Arias; Hui Ding; Bindu Konda; Arthur Rekechenetskiy; Satoshi Inoue; Keith L. Black; Eggehard Holler; Julia Y. Ljubimova

Doxorubicin (DOX) is currently used in cancer chemotherapy to treat many tumors and shows improved delivery, reduced toxicity and higher treatment efficacy when being part of nanoscale delivery systems. However, a major drawback remains its toxicity to healthy tissue and the development of multi-drug resistance during prolonged treatment. This is why in our work we aimed to improve DOX delivery and reduce the toxicity by chemical conjugation with a new nanoplatform based on polymalic acid. For delivery into recipient cancer cells, DOX was conjugated via pH-sensitive hydrazone linkage along with polyethylene glycol (PEG) to a biodegradable, non-toxic and non-immunogenic nanoconjugate platform: poly(β-l-malic acid) (PMLA). DOX-nanoconjugates were found stable under physiological conditions and shown to successfully inhibit in vitro cancer cell growth of several invasive breast carcinoma cell lines such as MDA-MB-231 and MDA-MB- 468 and of primary glioma cell lines such as U87MG and U251.


Biomaterials | 2011

The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery

Hui Ding; Jose Portilla-Arias; Rameshwar Patil; Keith L. Black; Julia Y. Ljubimova; Eggehard Holler

Membranolytic macromolecules are promising vehicles for cytoplasmic drug delivery, but their efficiency and safety remains primary concerns. To address those concerns, membranolytic properties of various poly(β-L-malic acid) (PMLA) copolymers were extensively investigated as a function of concentration and pH. PMLA, a naturally occurring biodegradable polymer, acquires membranolytic activities after substitution of pendent carboxylates with hydrophobic amino acid derivatives. Ruled by hydrophobization and charge neutralization, membranolysis of PMLA copolymers increased as a function of polymer molecular weight and demonstrated a maximum with 50% substitution of carboxylates. Charge neutralization was achieved either conditionally by pH-dependent protonation or permanently by masking carboxylates. Membranolysis of PMLA copolymers containing tripeptides of leucine, tryptophan and phenylalanine were pH-dependent in contrast to pH-independent copolymers of Leucine ethyl ester and Leu-Leu-Leu-NH(2) with permanent charge neutralization. PMLA and tripeptides seemed a unique combination for pH-dependent membranolysis. In contrast to nontoxic pH-dependent PMLA copolymers, pH-independent copolymers were found toxic at high concentration, which is ascribed to their nonspecific disruption of plasma membrane at physiological pH. pH-Dependent copolymers were membranolytically active only at acidic pH typical of maturating endosomes, and are thus devoid of cytotoxicity. The PMLA tripeptide copolymers are useful for safe and efficient cytoplasmic delivery routed through endosome.


PLOS ONE | 2010

Phosphodiesterase Type 5 Inhibitors Increase Herceptin Transport and Treatment Efficacy in Mouse Metastatic Brain Tumor Models

Jinwei Hu; Julia Y. Ljubimova; Satoshi Inoue; Bindu Konda; Rameshwar Patil; Hui Ding; Andres Espinoza; Kolja Wawrowsky; Chirag G. Patil; Alexander V. Ljubimov; Keith L. Black

Background Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB), significantly limiting drug use in brain cancer treatment. Methodology/Principal Findings We examined the effect of phosphodiesterase 5 (PDE5) inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [14C]dextran and trastuzumab (Herceptin®, a humanized monoclonal antibody against HER2/neu) by cultured mouse brain endothelial cells (MBEC). The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [14C]dextran (2.6-fold increase) and to Herceptin (2-fold increase). Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p<0.01). Log-rank survival analysis of mice bearing HER2-positive intracranial breast tumor also showed a significant survival increase (p<0.02) in the group treated with Herceptin plus vardenafil as compared to other groups. However, vardenafil did not exert any beneficial effect on survival of mice bearing intracranial breast tumor with low HER2 expression and co-treated with Herceptin (p>0.05). Conclusions/Significance These findings suggest that PDE5 inhibitors may effectively modulate BTB permeability, and enhance delivery and therapeutic efficacy of monoclonal antibodies in hard-to-treat brain metastases from different primary tumors that had metastasized to the brain.


PLOS ONE | 2012

Nanobiopolymer for Direct Targeting and Inhibition of EGFR Expression in Triple Negative Breast Cancer

Satoshi Inoue; Rameshwar Patil; Jose Portilla-Arias; Hui Ding; Bindu Konda; Andres Espinoza; Dmitriy Mongayt; Janet L. Markman; Adam Elramsisy; H. Westley Phillips; Keith L. Black; Eggehard Holler; Julia Y. Ljubimova

Treatment options for triple negative breast cancer (TNBC) are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR) therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid) (PMLA) nanoplatform for TNBC treatment. The nanobioconjugate carries anti-tumor nucleosome-specific monoclonal antibody (mAb) 2C5 to target breast cancer cells, anti-mouse transferrin receptor (TfR) antibody for drug delivery through the host endothelial system, and Morpholino antisense oligonucleotide (AON) to inhibit EGFR synthesis. The nanobioconjugates variants were: (1) P (BioPolymer) with AON, 2C5 and anti-TfR for tumor endothelial and cancer cell targeting, and EGFR suppression (P/AON/2C5/TfR), and (2) P with AON and 2C5 (P/AON/2C5). Controls included (3) P with 2C5 but without AON (P/2C5), (4) PBS, and (5) P with PEG and leucine ester (LOEt) for endosomal escape (P/mPEG/LOEt). Drugs were injected intravenously to MDA-MB-468 TNBC bearing mice. Tissue accumulation of injected nanobioconjugates labeled with Alexa Fluor 680 was examined by Xenogen IVIS 200 (live imaging) and confocal microscopy of tissue sections. Levels of EGFR, phosphorylated and total Akt in tumor samples were detected by western blotting. In vitro western blot showed that the leading nanobioconjugate P/AON/2C5/TfR inhibited EGFR synthesis significantly better than naked AON. In vivo imaging revealed that 2C5 increased drug-tumor accumulation. Significant tumor growth inhibition was observed in mice treated with the lead nanobioconjugate (1) [P = 0.03 vs. controls; P<0.05 vs. nanobioconjugate variant (2)]. Lead nanobioconjugate (1) also showed stronger inhibition of EGFR expression and Akt phosphorylation than other treatments. Treatment of TNBC with the new nanobioconjugate results in tumor growth arrest by inhibiting EGFR and its downstream signaling intermediate, phosphorylated Akt. The nanobioconjugate represents a new generation of nanodrugs for treatment of TNBC.


Journal of Drug Targeting | 2013

Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment

Julia Y. Ljubimova; Jose Portilla-Arias; Rameshwar Patil; Hui Ding; Satoshi Inoue; Janet L. Markman; Arthur Rekechenetskiy; Bindu Konda; Pallavi R. Gangalum; Alexandra Chesnokova; Alexander V. Ljubimov; Keith L. Black; Eggehard Holler

Abstract Engineered nanoparticles are widely used for delivery of drugs but frequently lack proof of safety for cancer patient’s treatment. All-in-one covalent nanodrugs of the third generation have been synthesized based on a poly(β-l-malic acid) (PMLA) platform, targeting human triple-negative breast cancer (TNBC). They significantly inhibited tumor growth in nude mice by blocking synthesis of epidermal growth factor receptor, and α4 and β1 chains of laminin-411, the tumor vascular wall protein and angiogenesis marker. PMLA and nanodrug biocompatibility and toxicity at low and high dosages were evaluated in vitro and in vivo. The dual-action nanodrug and single-action precursor nanoconjugates were assessed under in vitro conditions and in vivo with multiple treatment regimens (6 and 12 treatments). The monitoring of TNBC treatment in vivo with different drugs included blood hematologic and immunologic analysis after multiple intravenous administrations. The present study demonstrates that the dual-action nanoconjugate is highly effective in preclinical TNBC treatment without side effects, supported by hematologic and immunologic assays data. PMLA-based nanodrugs of the Polycefin™ family passed multiple toxicity and efficacy tests in vitro and in vivo on preclinical level and may prove to be optimized and efficacious for the treatment of cancer patients in the future.


Macromolecular Bioscience | 2011

Poly(methyl malate) Nanoparticles: Formation, Degradation, and Encapsulation of Anticancer Drugs

Alberto Lanz-Landázuri; Montserrat García-Alvarez; Jose Portilla-Arias; Antxon Martínez de Ilarduya; Rameshwar Patil; Eggehard Holler; Julia Y. Ljubimova; Sebastián Muñoz-Guerra

PMLA nanoparticles with diameters of 150-250 nm are prepared, and their hydrolytic degradation is studied under physiological conditions. Degradation occurs by hydrolysis of the side chain methyl ester followed by cleavage of the main-chain ester group with methanol and L-malic acid as the final degradation products. No alteration of the cell viability is found after 1 h of incubation, but toxicity increases significantly after 3 d, probably due to the noxious effect of the released methanol. Anticancer drugs temozolomide and doxorubicin are encapsulated in the NPs with 20-40% efficiency, and their release is monitored using in vitro essays. Temozolomide is fully liberated within several hours, whereas doxorubicin is steadily released from the particles over a period of 1 month.

Collaboration


Dive into the Rameshwar Patil's collaboration.

Top Co-Authors

Avatar

Julia Y. Ljubimova

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eggehard Holler

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Keith L. Black

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hui Ding

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bindu Konda

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satoshi Inoue

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinwei Hu

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge