Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julian Adlard is active.

Publication


Featured researches published by Julian Adlard.


Journal of the National Cancer Institute | 2013

Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results From Prospective Analysis of EMBRACE

Nasim Mavaddat; Susan Peock; Debra Frost; Steve Ellis; Radka Platte; Elena Fineberg; D. Gareth Evans; Louise Izatt; Rosalind Eeles; Julian Adlard; Rosemarie Davidson; Diana Eccles; Trevor Cole; Jackie Cook; Carole Brewer; Marc Tischkowitz; Fiona Douglas; Shirley Hodgson; Lisa Walker; Mary Porteous; Patrick J. Morrison; Lucy Side; M. John Kennedy; Catherine Houghton; Alan Donaldson; Mark T. Rogers; Huw Dorkins; Zosia Miedzybrodzka; Helen Gregory; Jacqueline Eason

BACKGROUND Reliable estimates of cancer risk are critical for guiding management of BRCA1 and BRCA2 mutation carriers. The aims of this study were to derive penetrance estimates for breast cancer, ovarian cancer, and contralateral breast cancer in a prospective series of mutation carriers and to assess how these risks are modified by common breast cancer susceptibility alleles. METHODS Prospective cancer risks were estimated using a cohort of 978 BRCA1 and 909 BRCA2 carriers from the United Kingdom. Nine hundred eighty-eight women had no breast or ovarian cancer diagnosis at baseline, 1509 women were unaffected by ovarian cancer, and 651 had been diagnosed with unilateral breast cancer. Cumulative risks were obtained using Kaplan-Meier estimates. Associations between cancer risk and covariables of interest were evaluated using Cox regression. All statistical tests were two-sided. RESULTS The average cumulative risks by age 70 years for BRCA1 carriers were estimated to be 60% (95% confidence interval [CI] = 44% to 75%) for breast cancer, 59% (95% CI = 43% to 76%) for ovarian cancer, and 83% (95% CI = 69% to 94%) for contralateral breast cancer. For BRCA2 carriers, the corresponding risks were 55% (95% CI = 41% to 70%) for breast cancer, 16.5% (95% CI = 7.5% to 34%) for ovarian cancer, and 62% (95% CI = 44% to 79.5%) for contralateral breast cancer. BRCA2 carriers in the highest tertile of risk, defined by the joint genotype distribution of seven single nucleotide polymorphisms associated with breast cancer risk, were at statistically significantly higher risk of developing breast cancer than those in the lowest tertile (hazard ratio = 4.1, 95% CI = 1.2 to 14.5; P = .02). CONCLUSIONS Prospective risk estimates confirm that BRCA1 and BRCA2 carriers are at high risk of developing breast, ovarian, and contralateral breast cancer. Our results confirm findings from retrospective studies that common breast cancer susceptibility alleles in combination are predictive of breast cancer risk for BRCA2 carriers.


Nature Genetics | 2011

Germline mutations in RAD51D confer susceptibility to ovarian cancer

Chey Loveday; Clare Turnbull; Emma Ramsay; Deborah Hughes; Elise Ruark; Jessica Frankum; Georgina Bowden; Bolot Kalmyrzaev; Margaret Warren-Perry; Katie Snape; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman; Jackie Cook; Rosemarie Davidson; Alan Donaldson; Fiona Douglas; Lynn Greenhalgh; Alex Henderson; Louise Izatt; Ajith Kumar; Fiona Lalloo; Zosia Miedzybrodzka; Patrick J. Morrison; Joan Paterson; Mary Porteous

Recently, RAD51C mutations were identified in families with breast and ovarian cancer. This observation prompted us to investigate the role of RAD51D in cancer susceptibility. We identified eight inactivating RAD51D mutations in unrelated individuals from 911 breast-ovarian cancer families compared with one inactivating mutation identified in 1,060 controls (P = 0.01). The association found here was principally with ovarian cancer, with three mutations identified in the 59 pedigrees with three or more individuals with ovarian cancer (P = 0.0005). The relative risk of ovarian cancer for RAD51D mutation carriers was estimated to be 6.30 (95% CI 2.86–13.85, P = 4.8 × 10−6). By contrast, we estimated the relative risk of breast cancer to be 1.32 (95% CI 0.59–2.96, P = 0.50). These data indicate that RAD51D mutation testing may have clinical utility in individuals with ovarian cancer and their families. Moreover, we show that cells deficient in RAD51D are sensitive to treatment with a PARP inhibitor, suggesting a possible therapeutic approach for cancers arising in RAD51D mutation carriers.


Journal of Clinical Oncology | 2008

Predictive Biomarkers of Chemotherapy Efficacy in Colorectal Cancer: Results From the UK MRC FOCUS Trial

Michael S. Braun; Susan Richman; P. Quirke; Catherine Daly; Julian Adlard; Faye Elliott; Jennifer H. Barrett; Peter Selby; Angela M. Meade; Richard Stephens; Mahesh K. B. Parmar; Matthew T. Seymour

PURPOSE Candidate predictive biomarkers for irinotecan and oxaliplatin were assessed in 1,628 patients in Fluorouracil, Oxaliplatin, CPT-11: Use and Sequencing (FOCUS), a large randomized trial of fluorouracil alone compared with fluorouracil and irinotecan and compared with fluorouracil and oxaliplatin in advanced colorectal cancer. METHODS The candidate biomarkers were: tumor immunohistochemistry for MLH1/MSH2, p53, topoisomerase-1 (Topo1), excision repair cross-complementing gene 1 (ERCC1), O-6-methylguanine-DNA-methyltranserase (MGMT), and cyclooxygenase 2 (COX2); germline DNA polymorphisms in GSTP1, ABCB1, XRCC1, ERCC2, and UGT1A1. These were screened in more than 750 patients for interaction with benefit from irinotecan or oxaliplatin; two markers (Topo1 and MLH1/MSH2) met criteria to be taken forward for analysis in the full population. Primary end points were progression-free survival (PFS) and overall survival. RESULTS One thousand three hundred thirteen patients (81%) were assessable for Topo1 immunohistochemistry (low, < 10%; moderate, 10% to 50%; or high, > 50% tumor nuclei). In patients with low Topo1, PFS was not improved by the addition of either irinotecan (hazard ratio [HR], 0.98; 95% CI, 0.78 to 1.22) or oxaliplatin (HR, 0.85; 95% CI, 0.68 to 1.07); conversely, patients with moderate/high Topo1 benefited from the addition of either drug (HR, 0.48 to 0.70 in all categories; interaction P = .005; overall, P = .001 for irinotecan; P = .05 for oxaliplatin). High Topo1 was associated with a major overall survival benefit with first-line combination chemotherapy (HR, 0.60; median benefit, 5.3 months); patients with moderate or low Topo1 did not benefit (HR, 0.92 and 1.09, respectively; interaction P = .005). MLH1/MSH2 did not show significant interaction with treatment, although the low rate of loss (4.4%) limits the power of the study for this biomarker. CONCLUSION Topo1 immunohistochemistry identified subpopulations that did or did not benefit from irinotecan, and possibly also from oxaliplatin. If verified independently, this information will contribute to the individualization of treatment for colorectal cancer.


Nature | 2012

Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer

Elise Ruark; Katie Snape; Peter Humburg; Chey Loveday; Ilirjana Bajrami; Rachel Brough; Daniel Nava Rodrigues; Anthony Renwick; Sheila Seal; Emma Ramsay; Silvana Del Vecchio Duarte; Manuel A. Rivas; Margaret Warren-Perry; Anna Zachariou; Adriana Campion-Flora; Sandra Hanks; Anne Murray; Naser Ansari Pour; Jenny Douglas; Lorna Gregory; Andrew J. Rimmer; Neil Walker; Tsun-Po Yang; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman

Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.


JAMA | 2017

Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers

Karoline B. Kuchenbaecker; John L. Hopper; Daniel R. Barnes; Kelly-Anne Phillips; T.M. Mooij; Marie-José Roos-Blom; Sarah Jervis; Flora E. van Leeuwen; Roger L. Milne; Nadine Andrieu; David E. Goldgar; Mary Beth Terry; Matti A. Rookus; Douglas F. Easton; Antonis C. Antoniou; Lesley McGuffog; D. Gareth Evans; Daniel Barrowdale; Debra Frost; Julian Adlard; Kai-Ren Ong; Louise Izatt; Marc Tischkowitz; Ros Eeles; Rosemarie Davidson; Shirley Hodgson; Steve Ellis; Catherine Noguès; Christine Lasset; Dominique Stoppa-Lyonnet

Importance The clinical management of BRCA1 and BRCA2 mutation carriers requires accurate, prospective cancer risk estimates. Objectives To estimate age-specific risks of breast, ovarian, and contralateral breast cancer for mutation carriers and to evaluate risk modification by family cancer history and mutation location. Design, Setting, and Participants Prospective cohort study of 6036 BRCA1 and 3820 BRCA2 female carriers (5046 unaffected and 4810 with breast or ovarian cancer or both at baseline) recruited in 1997-2011 through the International BRCA1/2 Carrier Cohort Study, the Breast Cancer Family Registry and the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, with ascertainment through family clinics (94%) and population-based studies (6%). The majority were from large national studies in the United Kingdom (EMBRACE), the Netherlands (HEBON), and France (GENEPSO). Follow-up ended December 2013; median follow-up was 5 years. Exposures BRCA1/2 mutations, family cancer history, and mutation location. Main Outcomes and Measures Annual incidences, standardized incidence ratios, and cumulative risks of breast, ovarian, and contralateral breast cancer. Results Among 3886 women (median age, 38 years; interquartile range [IQR], 30-46 years) eligible for the breast cancer analysis, 5066 women (median age, 38 years; IQR, 31-47 years) eligible for the ovarian cancer analysis, and 2213 women (median age, 47 years; IQR, 40-55 years) eligible for the contralateral breast cancer analysis, 426 were diagnosed with breast cancer, 109 with ovarian cancer, and 245 with contralateral breast cancer during follow-up. The cumulative breast cancer risk to age 80 years was 72% (95% CI, 65%-79%) for BRCA1 and 69% (95% CI, 61%-77%) for BRCA2 carriers. Breast cancer incidences increased rapidly in early adulthood until ages 30 to 40 years for BRCA1 and until ages 40 to 50 years for BRCA2 carriers, then remained at a similar, constant incidence (20-30 per 1000 person-years) until age 80 years. The cumulative ovarian cancer risk to age 80 years was 44% (95% CI, 36%-53%) for BRCA1 and 17% (95% CI, 11%-25%) for BRCA2 carriers. For contralateral breast cancer, the cumulative risk 20 years after breast cancer diagnosis was 40% (95% CI, 35%-45%) for BRCA1 and 26% (95% CI, 20%-33%) for BRCA2 carriers (hazard ratio [HR] for comparing BRCA2 vs BRCA1, 0.62; 95% CI, 0.47-0.82; P=.001 for difference). Breast cancer risk increased with increasing number of first- and second-degree relatives diagnosed as having breast cancer for both BRCA1 (HR for ≥2 vs 0 affected relatives, 1.99; 95% CI, 1.41-2.82; P<.001 for trend) and BRCA2 carriers (HR, 1.91; 95% CI, 1.08-3.37; P=.02 for trend). Breast cancer risk was higher if mutations were located outside vs within the regions bounded by positions c.2282-c.4071 in BRCA1 (HR, 1.46; 95% CI, 1.11-1.93; P=.007) and c.2831-c.6401 in BRCA2 (HR, 1.93; 95% CI, 1.36-2.74; P<.001). Conclusions and Relevance These findings provide estimates of cancer risk based on BRCA1 and BRCA2 mutation carrier status using prospective data collection and demonstrate the potential importance of family history and mutation location in risk assessment.


Journal of Clinical Oncology | 2009

Association of Molecular Markers With Toxicity Outcomes in a Randomized Trial of Chemotherapy for Advanced Colorectal Cancer: The FOCUS Trial

Michael S. Braun; Susan Richman; L. C. Thompson; Catherine Daly; Angela M. Meade; Julian Adlard; James M. Allan; Mahesh K. B. Parmar; P. Quirke; Matthew T. Seymour

PURPOSE Predicting efficacy and toxicity could potentially allow individualization of cancer therapy. We investigated putative pharmacogenetic markers of chemotherapy toxicity in a large randomized trial. PATIENTS, MATERIALS, AND METHODS Patients were randomly assigned to different sequences of chemotherapy for advanced colorectal cancer. First-line therapy was fluorouracil (FU), irinotecan/FU (IrFU) or oxaliplatin/FU (OxFU). Patients allocated first-line FU had planned second-line irinotecan alone, IrFU, or OxFU. The primary toxicity outcome measure was toxicity-induced delay or dose reduction; the secondary outcome was Common Terminology Criteria of Adverse Events grade >or= 3 toxicity. DNA was analyzed in 1,188 patients; 1,036 were assessable for the primary outcome, including 688 treated with FU, 270 with IrFU (first or second line), 280 with OxFU (first or second line), 184 with irinotecan alone, and 454 with any irinotecan-containing regimen. Ten polymorphisms were assessed: thymidylate synthase-enhancer region (TYMS-ER), thymidylate synthase 1494 (TYMS-1494), dihydropyrimidine dehydrogenase (DPYD), methylenetetrahydrofolate reductase (MTHFR), mutL homolog 1 (MLH1), UDP glucuronyltransferase (UGT1A1), ATP-binding cassette group B gene 1 (ABCB1), x-ray cross-complementing group 1 (XRCC1), glutathione-S-transferase P1 (GSTP1), and excision repair cross-complementing gene 2 (ERCC2). Results Using the primary outcome measure, no polymorphism was significantly associated (P < .01) with the toxicity of any regimen or with the difference in toxicity of IrFU or OxFU versus FU alone. Trends (of doubtful significance) were seen for associations of XRCC1, ERCC2, and GSTP1 with toxicity during irinotecan regimens: XRCC1, primary end point, any irinotecan-containing regimen (P = .045); ERCC2, secondary end point, irinotecan alone (P = .003); GSTP1, secondary end point; IrFU (P = .039); and irinotecan alone (P = .05). There was no evidence of association of UGT1A1*28 with irinotecan toxicity. CONCLUSION These results do not support the routine clinical use of the evaluated polymorphisms, including UGT1A1*28. Further investigation of XRCC1, ERCC2, and GSTP1 as potential predictors of irinotecan toxicity is warranted.


European Urology | 2015

Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer.

Elena Castro; Chee Goh; Daniel Leongamornlert; Ed Saunders; Malgorzata Tymrakiewicz; Tokhir Dadaev; Koveela Govindasami; Michelle Guy; Steve Ellis; Debra Frost; Elizabeth Bancroft; Trevor Cole; Marc Tischkowitz; M. John Kennedy; Jacqueline Eason; Carole Brewer; D. Gareth Evans; Rosemarie Davidson; Diana Eccles; Mary Porteous; Fiona Douglas; Julian Adlard; Alan Donaldson; Antonis C. Antoniou; Zsofia Kote-Jarai; Douglas F. Easton; David Olmos; Rosalind Eeles

BACKGROUND Germline BRCA mutations are associated with worse prostate cancer (PCa) outcomes; however, the most appropriate management for mutation carriers has not yet been investigated. OBJECTIVE To evaluate the response of BRCA carriers to conventional treatments for localised PCa by analysing metastasis-free survival (MFS) and cause-specific survival (CSS) following radical prostatectomy (RP) or external-beam radiation therapy (RT). DESIGN, SETTING, AND PARTICIPANTS Tumour features and outcomes of 1302 patients with local/locally advanced PCa (including 67 BRCA mutation carriers) were analysed. RP was undergone by 535 patients (35 BRCA); 767 received RT (32 BRCA). Median follow-up was 64 mo. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Median survival and 3-, 5-, and 10-yr survival rates were estimated using the Kaplan-Meier method. Generated survival curves were compared using the log-rank test. Cox regression analyses were used to assess the prognostic value of BRCA mutations. RESULTS AND LIMITATIONS A total of 67 BRCA carriers and 1235 noncarriers were included. At 3, 5, and 10 yr after treatment, 97%, 94%, and 84% of noncarriers and 90%, 72%, and 50% of carriers were free from metastasis (p<0.001). The 3-, 5- and 10-yr CSS rates were significantly better in the noncarrier cohort (99%, 97%, and 85%, respectively) than in carriers (96%, 76%, and 61%, respectively; p<0.001). Multivariate analysis confirmed BRCA mutations as an independent prognostic factor for MFS (hazard ratio [HR]: 2.36; 95% confidence interval [CI], 1.38-4.03; p=0.002) and CSS (HR: 2.17; 95% CI, 1.16-4.07; p=0.016). CONCLUSIONS BRCA carriers had worse outcomes than noncarriers when conventionally treated for local/locally advanced PCa. PATIENT SUMMARY Prostate cancer patients with germline BRCA mutations had worse outcomes than noncarriers when conventionally treated with surgery or radiation therapy.


International Journal of Cancer | 2008

MLH1 −93G>A promoter polymorphism and risk of mismatch repair deficient colorectal cancer

James M. Allan; Jennifer Shorto; Julian Adlard; Jonathan Bury; Ron Coggins; Rina George; Mark Katory; P. Quirke; Susan Richman; Daniel Scott; Kathryn Scott; Matthew T. Seymour; Lois B. Travis; Lisa Worrillow; D. Timothy Bishop; Angela Cox

Rare inherited mutations in the mutL homolog 1 (MLH1) DNA mismatch repair gene can confer an increased susceptibility to colorectal cancer (CRC) with high penetrance where disease frequently develops in the proximal colon. The core promoter of MLH1 contains a common single nucleotide polymorphism (SNP) (−93G>A, dbSNP ID:rs1800734) located in a region essential for maximum transcriptional activity. We used logistic regression analysis to examine the association between this variant and risk of CRC in patients in the United Kingdom. All statistical tests were 2 sided. In an analysis of 1,518 patients with CRC, homozygosity for the MLH1 −93A variant was associated with a significantly increased 3‐fold risk of CRC negative for MLH1 protein by immunohistochemistry (odds ratio (OR): AA vs GG = 3.30, 95% CI 1.46–7.47, n = 1392, p = 0.004, MLH1 negative vs MLH1 positive CRC) and with a 68% excess of proximal CRC (OR: AA vs GG=1.68, 95% confidence interval (CI) 1.00–2.83, n = 1,518, p = 0.05, proximal vs distal CRC). These findings suggest that the MLH1 −93G>A polymorphism defines a low penetrance risk allele for CRC.


Human Molecular Genetics | 2012

Gene-gene interactions in breast cancer susceptibility

Clare Turnbull; Sheila Seal; Anthony Renwick; Margaret Warren-Perry; Deborah Hughes; Anna Elliott; David Pernet; Susan Peock; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman; Jackie Cook; Rosemarie Davidson; Alan Donaldson; Fiona Douglas; Lynn Greenhalgh; Alex Henderson; Louise Izatt; Ajith Kumar; Fiona Lalloo; Zosia Miedzybrodzka; Patrick J. Morrison; Joan Paterson; Mary Porteous; Mark T. Rogers; Susan Shanley

There have been few definitive examples of gene-gene interactions in humans. Through mutational analyses in 7325 individuals, we report four interactions (defined as departures from a multiplicative model) between mutations in the breast cancer susceptibility genes ATM and CHEK2 with BRCA1 and BRCA2 (case-only interaction between ATM and BRCA1/BRCA2 combined, P = 5.9 × 10(-4); ATM and BRCA1, P= 0.01; ATM and BRCA2, P= 0.02; CHEK2 and BRCA1/BRCA2 combined, P = 2.1 × 10(-4); CHEK2 and BRCA1, P= 0.01; CHEK2 and BRCA2, P= 0.01). The interactions are such that the resultant risk of breast cancer is lower than the multiplicative product of the constituent risks, and plausibly reflect the functional relationships of the encoded proteins in DNA repair. These findings have important implications for models of disease predisposition and clinical translation.


BMJ | 2002

Left and right sided large bowel cancer: Have significant genetic differences in addition to well known clinical differences

Susan Richman; Julian Adlard

Cancer of the large bowel is the third commonest cancer, and second commonest cause of death due to cancer in the United Kingdom. In 1994, there were 28 904 registered new cases and about 15 740 deaths from colorectal cancer in England and Wales.1 Differences in clinical presentation and surgical management of right and left sided large bowel cancer are well known. For example, right sided tumours typically present at a more advanced stage with symptoms of weight loss and anaemia, whereas left sided tumours often present with rectal bleeding, change in bowel habit, and tenesmus. However, we are now aware of increasing differences in the molecular pathology of carcinomas depending on their laterality within the large bowel. These differences will become more relevant as systemic treatments improve. The large bowel includes both the colon and the rectum. It is continuous, with no definite point microscopically where colon ends and rectum begins. From an anatomical and surgical point of …

Collaboration


Dive into the Julian Adlard's collaboration.

Top Co-Authors

Avatar

Louise Izatt

Guy's and St Thomas' NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Carole Brewer

Royal Devon and Exeter Hospital

View shared research outputs
Top Co-Authors

Avatar

Debra Frost

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Mary Porteous

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Eccles

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge