Julian Moger
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julian Moger.
Physical Review Letters | 2010
Euan Hendry; Peter J. Hale; Julian Moger; A. K. Savchenko; S. A. Mikhailov
We present the first experimental investigation of nonlinear optical properties of graphene flakes. We find that at near infrared frequencies a graphene monolayer exhibits a remarkably high thirdorder optical nonlinearity which is practically independent of the wavelengths of incident light. The nonlinear optical response can be utilized for imaging purposes, with image contrasts of graphene which are orders of magnitude higher than those obtained using linear microscopy.
Environmental Science & Technology | 2010
Blair D. Johnston; Tessa M. Scown; Julian Moger; Susan A. Cumberland; Mohamed Baalousha; Kathryn L. Linge; Ronny van Aerle; Kym E. Jarvis; Jamie R. Lead; Charles R. Tyler
Nanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment, there is uncertainty on exposure because of a lack of understanding and data regarding the fate, behavior, and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO(2)), and titanium dioxide (TiO(2)), from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations were measured by a wide range of analytical methods. Definitive uptake from the water column and localization of TiO(2) NPs in gills was demonstrated for the first time by use of coherent anti-Stokes Raman scattering (CARS) microscopy. Significant uptake of nanomaterials was found only for cerium in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3 mum) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish.
Environmental Pollution | 2010
Tamara S. Galloway; Ceri Lewis; Ida Dolciotti; Blair D. Johnston; Julian Moger; Francesco Regoli
The ecotoxicology of manufactured nanoparticles (MNPs) in estuarine environments is not well understood. Here we explore the hypothesis that nanoTiO(2) and single walled nanotubes (SWNT) cause sublethal impacts to the infaunal species Arenicola marina (lugworm) exposed through natural sediments. Using a 10 day OECD/ASTM 1990 acute toxicity test, no significant effects were seen for SWNT up to 0.03 g/kg and no uptake of SWNTs into tissues was observed. A significant decrease in casting rate (P = 0.018), increase in cellular damage (P = 0.04) and DNA damage in coelomocytes (P = 0.008) was measured for nanoTiO(2), with a preliminary LOEC of 1 g/kg. Coherent anti-stokes Raman scattering microscopy (CARS) located aggregates of TiO(2) of >200 nm within the lumen of the gut and adhered to the outer epithelium of the worms, although no visible uptake of particles into tissues was detected.
Environmental Science & Technology | 2014
A. Watts; Ceri Lewis; Rhys M. Goodhead; Stephen J. Beckett; Julian Moger; Charles R. Tyler; Tamara S. Galloway
Microplastics, plastics particles <5 mm in length, are a widespread pollutant of the marine environment. Oral ingestion of microplastics has been reported for a wide range of marine biota, but uptake into the body by other routes has received less attention. Here, we test the hypothesis that the shore crab (Carcinus maenas) can take up microplastics through inspiration across the gills as well as ingestion of pre-exposed food (common mussel Mytilus edulis). We used fluorescently labeled polystyrene microspheres (8-10 μm) to show that ingested microspheres were retained within the body tissues of the crabs for up to 14 days following ingestion and up to 21 days following inspiration across the gill, with uptake significantly higher into the posterior versus anterior gills. Multiphoton imaging suggested that most microspheres were retained in the foregut after dietary exposure due to adherence to the hairlike setae and were found on the external surface of gills following aqueous exposure. Results were used to construct a simple conceptual model of particle flow for the gills and the gut. These results identify ventilation as a route of uptake of microplastics into a common marine nonfilter feeding species.
Journal of Biomedical Optics | 2008
Jessica C. Mansfield; C. Peter Winlove; Julian Moger; Stephen J. Matcher
Second harmonic generation (SHG) and two-photon fluorescence (TPF) microscopy is used to image the intercellular and pericellular matrix in normal and degenerate equine articular cartilage. The polarization sensitivity of SHG can be used directly to determine fiber orientation in the superficial 10 to 20 microm of tissue, and images of the ratio of intensities taken with two orthogonal polarization states reveal small scale variations in the collagen fiber organization that have not previously been reported. The signal from greater depths is influenced by the birefringence and biattenuance of the overlying tissue. An assessment of these effects is developed, based on the analysis of changes in TPF polarization with depth, and the approach is validated in tendon where composition is independent of depth. The analysis places an upper bound on the biattenuance of tendon of 2.65 x 10(-4). Normal cartilage reveals a consistent pattern of variation in fibril orientation with depth. In lesions, the pattern is severely disrupted and there are changes in the pericellular matrix, even at the periphery where the tissue appears microscopically normal. Quantification of polarization sensitivity changes with depth in cartilage will require detailed numerical models, but in the meantime, multiphoton microscopy provides sensitive indications of matrix changes in cartilage degeneration.
Optics Express | 2008
Julian Moger; Blair D. Johnston; Charles R. Tyler
Metal oxide nanomaterials are being used for an increasing number of commercial applications, such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and as drug delivery vehicles. The effects of these nanoparticles on the physiology of animals and in the environment are largely unknown and their potential associated health risks are currently a topic of hot debate. Information regarding the entry route of nanoparticles into exposed organisms and their subsequent localization within tissues and cells in the body are essential for understanding their biological impact. However, there is currently no imaging modality available that can simultaneously image these nanoparticles and the surrounding tissues without disturbing the biological structure. Due to their large nonlinear optical susceptibilities, which are enhanced by two-photon electronic resonance, metal oxides are efficient sources of coherent anti-Stokes Raman Scattering (CARS). We show that CARS microscopy can provide localization of metal oxide nanoparticles within biological structures at the cellular level. Nanoparticles of 20 - 70 nm in size were imaged within the fish gill; a structure that is a primary site of pollutant uptake into fish from the aquatic environment.
Journal of Anatomy | 2009
Jessica C. Mansfield; Jing Yu; Don P. Attenburrow; Julian Moger; Uday K. Tirlapur; Jill Urban; Zhanfeng Cui; Peter Winlove
A combination of two‐photon fluorescence (TPF), second harmonic generation (SHG) and coherent anti‐Stokes Raman scattering (CARS) imaging has been used to investigate the elastin fibre network in healthy equine articular cartilage from the metacarpophalangeal joint. The elastin fibres were identified using their intrinsic two‐photon fluorescence and immuno‐staining was used to confirm the identity of these fibres. SHG was used to reveal the collagen matrix and the collagen fibre orientations were determined from their SHG polarization sensitivity, while CARS was used to clearly delineate the cell boundaries. Extensive elastin fibre networks were found in all the joint regions investigated. The elastin was found predominantly in the superficial zone (upper 50 μm) and was aligned parallel to the articular surface. Elastin was also detected in the pericellular matrix surrounding the superficial chondrocytes; however, individual fibres could not be resolved in this region. Variations in the density and organization of the fibres were observed in different regions on the joint surface.
Molecular Pharmaceutics | 2012
Aikaterini Lalatsa; Natalie L. Garrett; T. Ferrarelli; Julian Moger; Andreas G. Schätzlein; Ijeoma F. Uchegbu
The clinical development of therapeutic peptides has been restricted to peptides for non-CNS diseases and parenteral dosage forms due to the poor permeation of peptides across the gastrointestinal mucosa and the blood-brain barrier. Quaternary ammonium palmitoyl glycol chitosan (GCPQ) nanoparticles facilitate the brain delivery of orally administered peptides such as leucine(5)-enkephalin, and here we examine the mechanism of GCPQ facilitated oral peptide absorption and brain delivery. By analyzing the oral biodistribution of radiolabeled GCPQ nanoparticles, the oral biodistribution of the model peptide leucine(5)-enkephalin and coherent anti-Stokes Raman scattering microscopy tissue images after an oral dose of deuterated GCPQ nanoparticles, we have established a number of facts. Although 85-90% of orally administered GCPQ nanoparticles are not absorbed from the gastrointestinal tract, a peak level of 2-3% of the oral GCPQ dose is detected in the blood 30 min after dosing, and these GCPQ particles appear to transport the peptides to the blood. Additionally, although peptide loaded nanoparticles from low (6 kDa) and high (50 kDa) molecular weight GCPQ are taken up by enterocytes, polymer particles with a polymer molecular weight greater than 6 kDa are required to facilitate peptide delivery to the brain after oral administration. By examining our current and previous data, we conclude that GCPQ particles facilitate oral peptide absorption by protecting the peptide from gastrointestinal degradation, adhering to the mucus to increase the drug gut residence time and transporting GCPQ associated peptide across the enterocytes and to the systemic circulation, enabling the GCPQ stabilized peptide to be transported to the brain. Orally administered GCPQ particles are also circulated from the gastrointestinal tract to the liver and onward to the gall bladder, presumably for final transport back to the gastrointestinal tract.
Journal of Biophotonics | 2012
Natalie L. Garrett; Aikaterini Lalatsa; Ijeoma F. Uchegbu; Andreas G. Schätzlein; Julian Moger
Advances in pharmaceutical nanotechnology have yielded ever increasingly sophisticated nanoparticles for medicine delivery. When administered via oral, intravenous, ocular and transcutaneous delivery routes, these nanoparticles can elicit enhanced drug performance. In spite of this, little is known about the mechanistic processes underlying interactions between nanoparticles and tissues, or how these correlate with improved pharmaceutical effects. These mechanisms must be fully understood before nanomedicines can be rationally engineered to optimise their performance. Methods to directly visualise these particulates within tissue samples have traditionally involved imaging modalities requiring covalent labelling of fluorescent or radioisotope contrast agents. We present CARS, second harmonic generation and two photon fluorescence microscopy combined as a multi-modal label-free method for pinpointing polymeric nanoparticles within the stomach, intestine, gall bladder and liver. We demonstrate for the first time that orally administered chitosan nanoparticles follow a recirculation pathway from the GI tract via enterocytes, to the liver hepatocytes and intercellular spaces and then to the gall bladder, before being re-released into the gut together with bile.
Journal of Biophotonics | 2009
Natalie L. Garrett; Peter Vukusic; F. Y. Ogrin; Evgeny Sirotkin; C. Peter Winlove; Julian Moger
We show that naturally occurring chitinous nanostructures found on the wings of the Graphium butterfly can be used as substrates for surface-enhanced Raman scattering when coated with a thin film of gold or silver. The substrates were found to exhibit excellent biocompatibility and sensitivity, making them ideal for protein assaying. An assay using avidin/biotin binding showed that the substrates could be used to quantify protein binding directly from changes in the surface-enhanced Raman scattering (SERS) spectra and were sensitive over a concentration range comparable with a typical enzyme-linked immunosorbent assays (ELISA) assay. A biomimetic version of the wing nanostructures produced using a highly reproducible, large-scale fabrication process, yielded comparable enhancement factors and biocompatibility. The excellent biocompatibility of the wings and biomimetic substrates is unparalleled by other lithographically produced substrates, and this could pave the way for widespread application of ultrasensitive SERS-based bioassays.