Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliana Benito is active.

Publication


Featured researches published by Juliana Benito.


Cancer Discovery | 2014

Selective BCL-2 Inhibition by ABT-199 Causes On-Target Cell Death in Acute Myeloid Leukemia

Rongqing Pan; Leah Hogdal; Juliana Benito; Donna Bucci; Lina Han; Gautam Borthakur; Jorge Cortes; Daniel J. DeAngelo; Lakeisha Debose; Hong Mu; Hartmut Döhner; Verena I. Gaidzik; Ilene Galinsky; Leonard S Golfman; Torsten Haferlach; Karine Harutyunyan; Jianhua Hu; Joel D. Leverson; Guido Marcucci; Markus Müschen; Rachel Newman; Eugene Park; Peter P. Ruvolo; Vivian Ruvolo; Jeremy Ryan; Sonja Schindela; Patrick A. Zweidler-McKay; Richard Stone; Hagop M. Kantarjian; Michael Andreeff

B-cell leukemia/lymphoma 2 (BCL-2) prevents commitment to programmed cell death at the mitochondrion. It remains a challenge to identify those tumors that are best treated by inhibition of BCL-2. Here, we demonstrate that acute myeloid leukemia (AML) cell lines, primary patient samples, and murine primary xenografts are very sensitive to treatment with the selective BCL-2 antagonist ABT-199. In primary patient cells, the median IC50 was approximately 10 nmol/L, and cell death occurred within 2 hours. Our ex vivo sensitivity results compare favorably with those observed for chronic lymphocytic leukemia, a disease for which ABT-199 has demonstrated consistent activity in clinical trials. Moreover, mitochondrial studies using BH3 profiling demonstrate activity at the mitochondrion that correlates well with cytotoxicity, supporting an on-target mitochondrial mechanism of action. Our protein and BH3 profiling studies provide promising tools that can be tested as predictive biomarkers in any clinical trial of ABT-199 in AML.


PLOS ONE | 2011

Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104.

Juliana Benito; Yuexi Shi; Barbara Szymanska; Hernan Carol; Ingrid Boehm; Hongbo Lu; Sergej Konoplev; Wendy Fang; Patrick A. Zweidler-McKay; Dario Campana; Gautam Borthakur; Carlos E. Bueso-Ramos; Elizabeth J. Shpall; Deborah A. Thomas; Craig T. Jordan; Hagop M. Kantarjian; William R. Wilson; Richard B. Lock; Michael Andreeff; Marina Konopleva

Recent studies indicate that interactions between leukemia cells and the bone marrow (BM) microenvironment promote leukemia cell survival and confer resistance to anti-leukemic drugs. There is evidence that BM microenvironment contains hypoxic areas that confer survival advantage to hematopoietic cells. In the present study we investigated whether hypoxia in leukemic BM contributes to the protective role of the BM microenvironment. We observed a marked expansion of hypoxic BM areas in immunodeficient mice engrafted with acute lymphoblastic leukemia (ALL) cells. Consistent with this finding, we found that hypoxia promotes chemoresistance in various ALL derived cell lines. These findings suggest to employ hypoxia-activated prodrugs to eliminate leukemia cells within hypoxic niches. Using several xenograft models, we demonstrated that administration of the hypoxia-activated dinitrobenzamide mustard, PR-104 prolonged survival and decreased leukemia burden of immune-deficient mice injected with primary acute lymphoblastic leukemia cells. Together, these findings strongly suggest that targeting hypoxia in leukemic BM is feasible and may significantly improve leukemia therapy.


Cancer Biology & Therapy | 2012

Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment

Olga Frolova; Ismael Samudio; Juliana Benito; Rodrigo Jacamo; Steven M. Kornblau; Ana Markovic; Wendy D. Schober; Hongbo Lu; Yi Hua Qiu; Daniela Buglio; Teresa McQueen; Sherry Pierce; Elizabeth J. Shpall; Sergej Konoplev; Deborah A. Thomas; Hagop M. Kantarjian; Richard B. Lock; Michael Andreeff; Marina Konopleva

Overcoming resistance to chemotherapy is the main therapeutic challenge in the treatment of acute lymphocytic leukemia (ALL). Interactions between leukemia cells and the microenvironment promote leukemia cell survival and confer resistance to chemotherapy. Hypoxia is an integral component of bone marrow (BM) microenvironment. Hypoxia-inducible factor-1α (HIF-1), a key regulator of the cellular response to hypoxia, regulates cell growth and metabolic adaptation to hypoxia. HIF-1α expression, analyzed by Reverse Phase Protein Arrays in 92 specimens from newly diagnosed patients with pre-B-ALL, had a negative prognostic impact on survival (p = 0.0025). Inhibition of HIF-1α expression by locked mRNA antagonist (LNA) promoted chemosensitivity under hypoxic conditions, while pharmacological or genetic stabilization of HIF-1α under normoxia inhibited cell growth and reduced apoptosis induction by chemotherapeutic agents. Co-culture of pre-B ALL or REH cells with BM-derived mesenchymal stem cells (MSC) under hypoxia resulted in further induction of HIF-1α protein and acquisition of the glycolytic phenotype, in part via stroma-induced AKT/mTOR signaling. mTOR blockade with everolimus reduced HIF-1α expression, diminished glucose uptake and glycolytic rate and partially restored the chemosensitivity of ALL cells under hypoxia/stroma co-cultures. Hence, mTOR inhibition or blockade of HIF-1α-mediated signaling may play an important role in chemosensitization of ALL cells under hypoxic conditions of the BM microenvironment.


Clinical Cancer Research | 2010

c-Jun-NH2-kinase-1 Inhibition Leads to Antitumor Activity in Ovarian Cancer

Pablo Vivas-Mejia; Juliana Benito; Ariel Fernández; Hee Dong Han; Lingegowda S. Mangala; Cristian Rodriguez-Aguayo; Arturo Chavez-Reyes; Yvonne G. Lin; Mark S. Carey; Alpa M. Nick; Rebecca L. Stone; Hye Sun Kim; Francois Xavier Claret; William G. Bornmann; Bryan T.J. Hennessy; Angela Sanguino; Zhengong Peng; Anil K. Sood; Gabriel Lopez-Berestein

Purpose: To show the functional, clinical, and biological significance of c-Jun-NH2-kinase (JNK)-1 in ovarian carcinoma. Experimental Design: Analysis of the impact of JNK on 116 epithelial ovarian cancers was conducted. The role of JNK in vitro and in experimental models of ovarian cancer was assessed. We studied the role of N-5-[4-(4-methyl piperazine methyl)-benzoylamido]-2-methylphenyl-4-[3-(4-methyl)-pyridyl]-2-pyrimidine amine (WBZ_4), a novel JNK inhibitor redesigned from imatinib based on targeting wrapping defects, in cell lines and in experimental models of ovarian cancer. Results: We found a significant association of pJNK with progression-free survival in the 116 epithelial ovarian cancers obtained at primary debulking therapy. WBZ_4 led to cell growth inhibition and increased apoptosis in a dose-dependent fashion in four ovarian cancer cell lines. In vivo, whereas imatinib had no effect on tumor growth, WBZ_4 inhibited tumor growth in orthotopic murine models of ovarian cancer. The antitumor effect was further increased in combination with docetaxel. Silencing of JNK-1 with systemically administered siRNA led to significantly reduced tumor weights compared with nonsilencing siRNA controls, indicating that indeed the antitumor effects observed were due to JNK-1 inhibition. Conclusions: These studies identify JNK-1 as an attractive therapeutic target in ovarian carcinoma and that the redesigned WBZ_4 compound should be considered for further clinical development. Clin Cancer Res; 16(1); 184–94


Cell Reports | 2015

MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199

Juliana Benito; Laura Godfrey; Kensuke Kojima; Leah Hogdal; Mark Wunderlich; Huimin Geng; Isabel Marzo; Karine Harutyunyan; Leonard S Golfman; Phillip S. North; Jon Kerry; Erica Ballabio; Triona Ni Chonghaile; Oscar Gonzalo; Yihua Qiu; Irmela Jeremias; La Kiesha Debose; Eric O'Brien; Helen Ma; Ping Zhou; Rodrigo Jacamo; Eugene Park; Kevin R. Coombes; Nianxiang Zhang; Deborah A. Thomas; Susan O'Brien; Hagop M. Kantarjian; Joel D. Leverson; Steven M. Kornblau; Michael Andreeff

Summary Targeted therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of current research. Mixed Lineage Leukemia (MLL) mutations such as the t(4;11) translocation cause aggressive leukemias that are refractory to conventional treatment. The t(4;11) translocation produces an MLL/AF4 fusion protein that activates key target genes through both epigenetic and transcriptional elongation mechanisms. In this study, we show that t(4;11) patient cells express high levels of BCL-2 and are highly sensitive to treatment with the BCL-2-specific BH3 mimetic ABT-199. We demonstrate that MLL/AF4 specifically upregulates the BCL-2 gene but not other BCL-2 family members via DOT1L-mediated H3K79me2/3. We use this information to show that a t(4;11) cell line is sensitive to a combination of ABT-199 and DOT1L inhibitors. In addition, ABT-199 synergizes with standard induction-type therapy in a xenotransplant model, advocating for the introduction of ABT-199 into therapeutic regimens for MLL-rearranged leukemias.


Haematologica | 2015

Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia

Marina Konopleva; Peter F. Thall; Cecilia Arana Yi; Gautam Borthakur; Andrew L. Coveler; Carlos E. Bueso-Ramos; Juliana Benito; Sergej Konoplev; Yongchuan Gu; Farhad Ravandi; Elias Jabbour; Stefan Faderl; Deborah A. Thomas; Jorge Cortes; Tapan Kadia; Steven M. Kornblau; Naval Daver; Naveen Pemmaraju; Hoang Q. Nguyen; Jennie Feliu; Hongbo Lu; Caimiao Wei; William R. Wilson; Teresa J. Melink; John Gutheil; Michael Andreeff; Elihu H. Estey; Hagop M. Kantarjian

We previously demonstrated vast expansion of hypoxic areas in the leukemic microenvironment and provided a rationale for using hypoxia-activated prodrugs. PR104 is a phosphate ester that is rapidly hydrolyzed in vivo to the corresponding alcohol PR-104A and further reduced to the amine and hydroxyl-amine nitrogen mustards that induce DNA cross-linking in hypoxic cells under low oxygen concentrations. In this phase I/II study, patients with relapsed/refractory acute myeloid leukemia (n=40) after 1 or 2 prior treatments or acute lymphoblastic leukemia (n=10) after any number of prior treatments received PR104; dose ranged from 1.1 to 4 g/m2. The most common treatment-related grade 3/4 adverse events were myelosuppression (anemia 62%, neutropenia 50%, thrombocytopenia 46%), febrile neutropenia (40%), infection (24%), and enterocolitis (14%). Ten of 31 patients with acute myeloid leukemia (32%) and 2 of 10 patients with acute lymphoblastic leukemia (20%) who received 3 g/m2 or 4 g/m2 had a response (complete response, n=1; complete response without platelet recovery, n=5; morphological leukemia-free state, n=6). The extent of hypoxia was evaluated by the hypoxia tracer pimonidazole administered prior to a bone marrow biopsy and by immunohistochemical assessments of hypoxia-inducible factor alpha and carbonic anhydrase IX. A high fraction of leukemic cells expressed these markers, and PR104 administration resulted in measurable decrease of the proportions of hypoxic cells. These findings indicate that hypoxia is a prevalent feature of the leukemic microenvironment and that targeting hypoxia with hypoxia-activated prodrugs warrants further evaluation in acute leukemia. The trial is registered at clinicaltrials.gov identifier: 01037556.


Cell Cycle | 2012

Differential impact of structurally different anti-diabetic drugs on proliferation and chemosensitivity of acute lymphoblastic leukemia cells

Jingxuan Pan; Chun Chen; Yanli Jin; Enrique Fuentes-Mattei; Guermarie Velazquez-Tores; Juliana Benito; Marina Konopleva; Michael Andreeff; Mong Hong Lee; Sai Ching Jim Yeung

Hyperglycemia during hyper-CVAD chemotherapy is associated with poor outcomes of acute lymphoblastic leukemia (ALL) (Cancer 2004; 100:1179–85). The optimal clinical strategy to manage hyperglycemia during hyper-CVAD is unclear. To examine whether anti-diabetic pharmacotherapy can influence chemosensitivity of ALL cells, we examined the impacts of different anti-diabetic agents on ALL cell lines and patient samples. Pharmacologically achievable concentrations of insulin, aspart and glargine significantly increased the number of ALL cells, and aspart and glargine did so at lower concentrations than human insulin. In contrast, metformin and rosiglitazone significantly decreased the cell number. Human insulin and analogs activated AKT/mTOR signaling and stimulated ALL cell proliferation (as measured by flow cytometric methods), but metformin and rosiglitazone blocked AKT/mTOR signaling and inhibited proliferation. Metformin 500 μM and rosiglitazone 10 μM were found to sensitize Reh cells to daunorubicin, while aspart, glargine and human insulin (all at 1.25 mIU/L) enhanced chemoresistance. Metformin and rosiglitazone enhanced daunorubicin-induced apoptosis, while insulin, aspart and glargine antagonized daunorubicin-induced apoptosis. In addition, metformin increased etoposide-induced and L-asparaginase-induced apoptosis; rosiglitazone increased etoposide-induced and vincristine-induced apoptosis. In conclusion, our results suggest that use of insulins to control hyperglycemia in ALL patients may contribute to anthracycline chemoresistance, while metformin and thiazolidinediones may improve chemosensitivity to anthracycline as well as other chemotherapy drugs through their different impacts on AKT/mTOR signaling in leukemic cells. Our data suggest that the choice of anti-diabetic pharmacotherapy during chemotherapy may influence clinical outcomes in ALL.


Journal of Clinical Investigation | 2014

SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome

Houda Alachkar; Ramasamy Santhanam; Kati Maharry; Klaus H. Metzeler; Xiaomeng Huang; Jessica Kohlschmidt; Jason H. Mendler; Juliana Benito; Christopher Hickey; Paolo Neviani; Adrienne M. Dorrance; Mirela Anghelina; Jihane Khalife; Somayeh S. Tarighat; Stefano Volinia; Susan P. Whitman; Peter Paschka; Pia Hoellerbauer; Yue Zhong Wu; Lina Han; Brad Bolon; William Blum; Krzysztof Mrózek; Andrew J. Carroll; Danilo Perrotti; Michael Andreeff; Michael A. Caligiuri; Marina Konopleva; Ramiro Garzon; Clara D. Bloomfield

Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.


British Journal of Haematology | 2014

SL-401 and SL-501, targeted therapeutics directed at the interleukin-3 receptor, inhibit the growth of leukaemic cells and stem cells in advanced phase chronic myeloid leukaemia.

Olga Frolova; Juliana Benito; Christopher L. Brooks; Rui Yu Wang; Borys Korchin; Eric K. Rowinsky; Jorge Cortes; Hagop M. Kantarjian; Michael Andreeff; Arthur E. Frankel; Marina Konopleva

While imatinib and other tyrosine kinase inhibitors (TKIs) are highly efficacious in the treatment of chronic myeloid leukaemia (CML), some patients become refractory to these therapies. After confirming that interleukin‐3 receptor (IL3R, CD123) is highly expressed on CD34+/CD38− BCR‐ABL1+ CML stem cells, we investigated whether targeting IL3R with diphtheria toxin (DT)‐IL3 fusion proteins SL‐401 (DT388‐IL3) and SL‐501 (DT388‐IL3[K116W]) could eradicate these stem cells. SL‐401 and SL‐501 inhibited cell growth and induced apoptosis in the KBM5 cell line and its TKI‐resistant KBM5‐STI subline. Combinations of imatinib with these agents increased apoptosis in KBM5 and in primary CML cells. In six primary CML samples, including CML cells harbouring the ABL1 T315I mutation, SL‐401 and SL‐501 decreased the absolute numbers of viable CD34+/CD38−/CD123+ CML progenitor cells by inducing apoptosis. IL3‐targeting agents reduced clonogenic growth and diminished the fraction of primitive long‐term culture‐initiating cells in samples from patients with advanced phase CML that were resistant to TKIs or harboured an ABL1 mutation. Survival was also extended in a mouse model of primary TKI‐resistant CML blast crisis. These data suggest that the DT‐IL3 fusion proteins, SL‐401 and SL‐501, deplete CML stem cells and may increase the effectiveness of current CML treatment, which principally targets tumour bulk.


Biochemical Pharmacology | 2014

A novel fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the nitrogen mustard prodrug PR-104A in human leukaemia cells

Stephen M.F. Jamieson; Yongchuan Gu; Donya Moradi Manesh; Jad El-Hoss; Duohui Jing; Karen L. MacKenzie; Christopher P. Guise; Annika Foehrenbacher; Susan M. Pullen; Juliana Benito; Jeff B. Smaill; Adam V. Patterson; Medhanie A. Mulaw; Marina Konopleva; Stefan K. Bohlander; Richard B. Lock; William R. Wilson

Aldo-keto reductase 1C3 (AKR1C3, EC 1.1.1.188) metabolises steroid hormones, prostaglandins and xenobiotics, and activates the dinitrobenzamide mustard prodrug PR-104A by reducing it to hydroxylamine PR-104H. Here, we describe a functional assay for AKR1C3 in cells using the fluorogenic probe coumberone (a substrate for all AKR1C isoforms) in conjunction with a specific inhibitor of AKR1C3, the morpholylurea SN34037. We use this assay to evaluate AKR1C3 activity and PR-104A sensitivity in human leukaemia cells. SN34037-sensitive reduction of coumberone to fluorescent coumberol correlated with AKR1C3 protein expression by immunoblotting in a panel of seven diverse human leukaemia cell lines, and with SN34037-sensitive reduction of PR-104A to PR-104H. SN34037 inhibited aerobic cytotoxicity of PR-104A in high-AKR1C3 TF1 erythroleukaemia cells, but not in low-AKR1C3 Nalm6 pre-B cell acute lymphocytic leukaemia (B-ALL) cells, although variation in PR-104H sensitivity confounded the relationship between AKR1C3 activity and PR-104A sensitivity across the cell line panel. AKR1C3 mRNA expression showed wide variation between leukaemia patients, with consistently higher levels in T-ALL than B-ALL. In short term cultures from patient-derived paediatric ALL xenografts, PR-104A was more potent in T-ALL than B-ALL lines, and PR-104A cytotoxicity was significantly inhibited by SN34037 in T-ALL but not B-ALL. Overall, the results demonstrate that SN34037-sensitive coumberone reduction provides a rapid and specific assay for AKR1C3 activity in cells, with potential utility for identifying PR-104A-responsive leukaemias. However, variations in PR-104H sensitivity indicate the need for additional biomarkers for patient stratification.

Collaboration


Dive into the Juliana Benito's collaboration.

Top Co-Authors

Avatar

Marina Konopleva

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Andreeff

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sergej Konoplev

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Deborah A. Thomas

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gautam Borthakur

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hongbo Lu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Patrick A. Zweidler-McKay

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Jacamo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Steven M. Kornblau

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge