Patrick A. Zweidler-McKay
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrick A. Zweidler-McKay.
Cancer Discovery | 2013
Curtis R. Pickering; Jiexin Zhang; Suk Young Yoo; Linnea Bengtsson; Shhyam Moorthy; David M. Neskey; Mei Zhao; Marcus V. Ortega Alves; Kyle Chang; Jennifer Drummond; Elsa Cortez; Tong Xin Xie; Di Zhang; Woonbok Chung; Jean-Pierre Issa; Patrick A. Zweidler-McKay; Xifeng Wu; Adel K. El-Naggar; John N. Weinstein; Jing Wang; Donna M. Muzny; Richard A. Gibbs; David A. Wheeler; Jeffrey N. Myers; Mitchell J. Frederick
The survival of patients with oral squamous cell carcinoma (OSCC) has not changed significantly in several decades, leading clinicians and investigators to search for promising molecular targets. To this end, we conducted comprehensive genomic analysis of gene expression, copy number, methylation, and point mutations in OSCC. Integrated analysis revealed more somatic events than previously reported, identifying four major driver pathways (mitogenic signaling, Notch, cell cycle, and TP53) and two additional key genes (FAT1, CASP8). The Notch pathway was defective in 66% of patients, and in follow-up studies of mechanism, functional NOTCH1 signaling inhibited proliferation of OSCC cell lines. Frequent mutation of caspase-8 (CASP8) defines a new molecular subtype of OSCC with few copy number changes. Although genomic alterations are dominated by loss of tumor suppressor genes, 80% of patients harbored at least one genomic alteration in a targetable gene, suggesting that novel approaches to treatment may be possible for this debilitating subset of head and neck cancers.
Cancer Cell | 2013
Jia Lu; Xiangcang Ye; Fan Fan; Ling Xia; Rajat Bhattacharya; Seth Bellister; Federico Tozzi; Eric Sceusi; Yunfei Zhou; Isamu Tachibana; Dipen M. Maru; David H. Hawke; Janusz Rak; Sendurai A. Mani; Patrick A. Zweidler-McKay; Lee M. Ellis
We report a paracrine effect whereby endothelial cells (ECs) promote the cancer stem cell (CSC) phenotype of human colorectal cancer (CRC) cells. We showed that, without direct cell-cell contact, ECs secrete factors that promoted the CSC phenotype in CRC cells via Notch activation. In human CRC specimens, CD133 and Notch intracellular domain-positive CRC cells colocalized in perivascular regions. An EC-derived, soluble form of Jagged-1, via ADAM17 proteolytic activity, led to Notch activation in CRC cells in a paracrine manner; these effects were blocked by immunodepletion of Jagged-1 in EC-conditioned medium or blockade of ADAM17 activity. Collectively, ECs play an active role in promoting Notch signaling and the CSC phenotype by secreting soluble Jagged-1.
Cancer Discovery | 2014
Rongqing Pan; Leah Hogdal; Juliana Benito; Donna Bucci; Lina Han; Gautam Borthakur; Jorge Cortes; Daniel J. DeAngelo; Lakeisha Debose; Hong Mu; Hartmut Döhner; Verena I. Gaidzik; Ilene Galinsky; Leonard S Golfman; Torsten Haferlach; Karine Harutyunyan; Jianhua Hu; Joel D. Leverson; Guido Marcucci; Markus Müschen; Rachel Newman; Eugene Park; Peter P. Ruvolo; Vivian Ruvolo; Jeremy Ryan; Sonja Schindela; Patrick A. Zweidler-McKay; Richard Stone; Hagop M. Kantarjian; Michael Andreeff
B-cell leukemia/lymphoma 2 (BCL-2) prevents commitment to programmed cell death at the mitochondrion. It remains a challenge to identify those tumors that are best treated by inhibition of BCL-2. Here, we demonstrate that acute myeloid leukemia (AML) cell lines, primary patient samples, and murine primary xenografts are very sensitive to treatment with the selective BCL-2 antagonist ABT-199. In primary patient cells, the median IC50 was approximately 10 nmol/L, and cell death occurred within 2 hours. Our ex vivo sensitivity results compare favorably with those observed for chronic lymphocytic leukemia, a disease for which ABT-199 has demonstrated consistent activity in clinical trials. Moreover, mitochondrial studies using BH3 profiling demonstrate activity at the mitochondrion that correlates well with cytotoxicity, supporting an on-target mitochondrial mechanism of action. Our protein and BH3 profiling studies provide promising tools that can be tested as predictive biomarkers in any clinical trial of ABT-199 in AML.
Clinical Cancer Research | 2008
Pingyu Zhang; Yanwen Yang; Patrick A. Zweidler-McKay; Dennis P.M. Hughes
Purpose: Notch signaling is an important mediator of growth and survival in several cancer types, with Notch pathway genes functioning as oncogenes or tumor suppressors in different cancers. However, the role of Notch in osteosarcoma is unknown. Experimental Design: We assessed the expression of Notch pathway genes in human osteosarcoma cell lines and patient samples. We then used pharmacologic and retroviral manipulation of the Notch pathway and studied the effect on osteosarcoma cell proliferation, survival, anchorage-independent growth, invasion, and metastasis in vitro and in vivo. Results: Notch pathway genes, including Notch ligand DLL1, Notch1 and Notch2, and the Notch target gene HES1, were expressed in osteosarcoma cells, and expression of HES1 was associated with invasive and metastatic potential. Blockade of Notch pathway signaling with a small molecule inhibitor of γ secretase eliminated invasion in Matrigel without affecting cell proliferation, survival, or anchorage-independent growth. Manipulation of Notch and HES1 signaling showed a crucial role for HES1 in osteosarcoma invasiveness and metastasis in vivo. Conclusion: These studies identify a new invasion and metastasis-regulating pathway in osteosarcoma and define a novel function for the Notch pathway: regulation of metastasis. Because the Notch pathway can be inhibited pharmacologically, these findings point toward possible new treatments to reduce invasion and metastasis in osteosarcoma.
Gastroenterology | 2012
Maria Inês Almeida; Milena S. Nicoloso; Lizhi Zeng; Cristina Ivan; Riccardo Spizzo; Roberta Gafà; Lianchun Xiao; Xinna Zhang; Ivan Vannini; Francesca Fanini; Muller Fabbri; Giovanni Lanza; Rui M. Reis; Patrick A. Zweidler-McKay; George A. Calin
BACKGROUND & AIMS MicroRNAs (miRNAs) can promote or inhibit tumor growth and are therefore being developed as targets for cancer therapies. They are diverse not only in the messenger RNAs (mRNA) they target, but in their production; the same hairpin RNA structure can generate mature products from each strand, termed 5p and 3p, that can bind different mRNAs. We analyzed the expression, functions, and mechanisms of miR-28-5p and miR-28-3p in colorectal cancer (CRC) cells. METHODS We measured levels of miR-28-5p and miR-28-3p expression in 108 CRC and 49 normal colorectal samples (47 paired) by reverse transcription, quantitative real-time polymerase chain reaction. The roles of miR-28 in CRC development were studied using cultured HCT116, RKO, and SW480 cells and tumor xenograft analyses in immunodeficient mice; their mRNA targets were also investigated. RESULTS miR-28-5p and miR-28-3p were down-regulated in CRC samples compared with normal colon samples. Overexpression of miRNAs in CRC cells had different effects and the miRNAs interacted with different mRNAs: miR-28-5p altered expression of CCND1 and HOXB3, whereas miR-28-3p bound NM23-H1. Overexpression of miR-28-5p reduced CRC cell proliferation, migration, and invasion in vitro, whereas miR-28-3p increased CRC cell migration and invasion in vitro. CRC cells overexpressing miR-28 developed tumors more slowly in mice compared with control cells, but miR-28 promoted tumor metastasis in mice. CONCLUSION miR-28-5p and miR-28-3p are transcribed from the same RNA hairpin and are down-regulated in CRC cells. Overexpression of each has different effects on CRC cell proliferation and migration. Such information has a direct application for the design of miRNA gene therapy trials.
Cancer | 2008
Guillermo De Angulo; Carrie Yuen; Shana L. Palla; Peter M. Anderson; Patrick A. Zweidler-McKay
Leukemia is the leading cause of disease‐related death in children, despite significant improvement in survival and modern risk stratification. The prognostic significance of absolute lymphocyte counts (ALC) was evaluated in young patients with acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL).
Journal of Experimental Medicine | 2013
Sankaranarayanan Kannan; Robert Sutphin; Mandy Hall; Leonard S Golfman; Wendy Fang; Riitta Nolo; Lauren J. Akers; Richard A. Hammitt; John S. McMurray; Steven M. Kornblau; Ari Melnick; Maria E. Figueroa; Patrick A. Zweidler-McKay
Activating Notch with a Notch agonist peptide induces apoptosis in AML patient samples.
PLOS ONE | 2011
Juliana Benito; Yuexi Shi; Barbara Szymanska; Hernan Carol; Ingrid Boehm; Hongbo Lu; Sergej Konoplev; Wendy Fang; Patrick A. Zweidler-McKay; Dario Campana; Gautam Borthakur; Carlos E. Bueso-Ramos; Elizabeth J. Shpall; Deborah A. Thomas; Craig T. Jordan; Hagop M. Kantarjian; William R. Wilson; Richard B. Lock; Michael Andreeff; Marina Konopleva
Recent studies indicate that interactions between leukemia cells and the bone marrow (BM) microenvironment promote leukemia cell survival and confer resistance to anti-leukemic drugs. There is evidence that BM microenvironment contains hypoxic areas that confer survival advantage to hematopoietic cells. In the present study we investigated whether hypoxia in leukemic BM contributes to the protective role of the BM microenvironment. We observed a marked expansion of hypoxic BM areas in immunodeficient mice engrafted with acute lymphoblastic leukemia (ALL) cells. Consistent with this finding, we found that hypoxia promotes chemoresistance in various ALL derived cell lines. These findings suggest to employ hypoxia-activated prodrugs to eliminate leukemia cells within hypoxic niches. Using several xenograft models, we demonstrated that administration of the hypoxia-activated dinitrobenzamide mustard, PR-104 prolonged survival and decreased leukemia burden of immune-deficient mice injected with primary acute lymphoblastic leukemia cells. Together, these findings strongly suggest that targeting hypoxia in leukemic BM is feasible and may significantly improve leukemia therapy.
Experimental Hematology | 2012
Simon N. Robinson; Paul J. Simmons; Michael W. Thomas; Nathalie Brouard; Jeannie A. Javni; Suprita Trilok; Jae Seung Shim; Hong Yang; David Steiner; William K. Decker; Dongxia Xing; Leonard D. Shultz; Barbara Savoldo; Gianpietro Dotti; Catherine M. Bollard; Leonard Miller; Richard E. Champlin; Elizabeth J. Shpall; Patrick A. Zweidler-McKay
Delayed engraftment remains a major hurdle after cord blood (CB) transplantation. It may be due, at least in part, to low fucosylation of cell surface molecules important for homing to the bone marrow microenvironment. Because fucosylation of specific cell surface ligands is required before effective interaction with selectins expressed by the bone marrow microvasculature can occur, a simple 30-minute ex vivo incubation of CB hematopoietic progenitor cells with fucosyltransferase-VI and its substrate (GDP-fucose) was performed to increase levels of fucosylation. The physiologic impact of CB hematopoietic progenitor cell hypofucosylation was investigated in vivo in NOD-SCID interleukin (IL)-2Rγ(null) (NSG) mice. By isolating fucosylated and nonfucosylated CD34(+) cells from CB, we showed that only fucosylated CD34(+) cells are responsible for engraftment in NSG mice. In addition, because the proportion of CD34(+) cells that are fucosylated in CB is significantly less than in bone marrow and peripheral blood, we hypothesize that these combined observations might explain, at least in part, the delayed engraftment observed after CB transplantation. Because engraftment appears to be correlated with the fucosylation of CD34(+) cells, we hypothesized that increasing the proportion of CD34(+) cells that are fucosylated would improve CB engraftment. Ex vivo treatment with fucosyltransferase-VI significantly increases the levels of CD34(+) fucosylation and, as hypothesized, this was associated with improved engraftment. Ex vivo fucosylation did not alter the biodistribution of engrafting cells or pattern of long-term, multilineage, multi-tissue engraftment. We propose that ex vivo fucosylation will similarly improve the rate and magnitude of engraftment for CB transplant recipients in a clinical setting.
Oncogene | 2010
Pingyu Zhang; Yanwen Yang; Riitta Nolo; Patrick A. Zweidler-McKay; Dennis P.M. Hughes
The highly conserved NOTCH signaling pathway has many essential functions in the development of diverse cells, tissues and organs from Drosophila to humans, and dysregulated NOTCH signaling contributes to several disorders, including vascular and bone defects, as well as several cancers. Here we describe a novel mechanism of NOTCH regulation by reciprocal inhibition of two NOTCH downstream effectors: Deltex1 and HES1. This mechanism appears to regulate invasion of osteosarcoma cells, as Deltex1 blocks osteosarcoma invasiveness by downregulating NOTCH/HES1 signaling. The inhibitory effect of endogenous Deltex1 on NOTCH signaling is mediated through binding with the intracellular domain of NOTCH and ubiquitination and degradation of NOTCH receptors. Conversely, we show that the NOTCH target gene HES1 causes transcriptional inhibition of Deltex1 by directly binding to the promoter of Deltex1. An HES1 binding site is identified 400 bp upstream of the transcription start site of Deltex1. HES1-mediated repression of Deltex1 requires the C-terminal H3/H4 and WRPW domains of HES1, which associate with the TLE/Groucho corepressors. Taken together, we define a molecular mechanism regulating NOTCH signaling by reciprocal inhibition of the NOTCH target genes HES1 and Deltex1 in mammalian cells. This mechanism may have important clinical implications for targeting NOTCH signaling in osteosarcoma and other cancers.The highly conserved NOTCH signaling pathway has many essential functions in the development of diverse cells, tissues and organs from Drosophila to humans, and dysregulated NOTCH signaling contributes to several disorders, including vascular and bone defects, as well as several cancers. Here we describe a novel mechanism of NOTCH regulation by reciprocal inhibition of two NOTCH downstream effectors: Deltex1 and HES1. This mechanism appears to regulate invasion of osteosarcoma cells, as Deltex1 blocks osteosarcoma invasiveness by downregulating NOTCH/HES1 signaling. The inhibitory effect of endogenous Deltex1 on NOTCH signaling is mediated through binding with the intracellular domain of NOTCH and ubiquitination and degradation of NOTCH receptors. Conversely, we show that the NOTCH target gene HES1 causes transcriptional inhibition of Deltex1 by directly binding to the promoter of Deltex1. An HES1 binding site is identified 400 bp upstream of the transcription start site of Deltex1. HES1-mediated repression of Deltex1 requires the C-terminal H3/H4 and WRPW domains of HES1, which associate with the TLE/Groucho corepressors. Taken together, we define a molecular mechanism regulating NOTCH signaling by reciprocal inhibition of the NOTCH target genes HES1 and Deltex1 in mammalian cells. This mechanism may have important clinical implications for targeting NOTCH signaling in osteosarcoma and other cancers.