Juliana I. Hori
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juliana I. Hori.
Microbes and Infection | 2010
Mariana S. Frutuoso; Juliana I. Hori; Marcelo S. F. Pereira; Djalma S.L. Junior; Fabiane Sônego; Koichi S. Kobayashi; Richard A. Flavell; Fernando Q. Cunha; Dario S. Zamboni
The intracellular bacterium Legionella pneumophila induces a severe form of pneumonia called Legionnaires diseases, which is characterized by a strong neutrophil (NE) infiltrate to the lungs of infected individuals. Although the participation of pattern recognition receptors, such as Toll-like receptors, was recently demonstrated, there is no information on the role of nod-like receptors (NLRs) for bacterial recognition in vivo and for NE recruitment to the lungs. Here, we employed a murine model of Legionnaires disease to evaluate host and bacterial factors involved in NE recruitment to the mice lungs. We found that L. pneumophila type four secretion system, known as Dot/Icm, was required for NE recruitment as dot/icm mutants fail to trigger NE recruitment in a process independent of bacterial multiplication. By using mice deficient for Nod1, Nod2, and Rip2, we found that these receptors accounted for NE recruitment to the lungs of infected mice. In addition, Rip2-dependent responses were important for cytokine production and bacterial clearance. Collectively, these studies show that Nod1, Nod2, and Rip2 account for generation of innate immune responses in vivo, which are important for NE recruitment and bacterial clearance in a murine model of Legionnaires diseases.
Journal of Immunology | 2011
Marcelo S. F. Pereira; Giuliano F. Morgantetti; Liliana M. Massis; Catarina V. Horta; Juliana I. Hori; Dario S. Zamboni
Although NLRC4/IPAF activation by flagellin has been extensively investigated, the downstream signaling pathways and the mechanisms responsible for infection clearance remain unclear. In this study, we used mice deficient for the inflammasome components in addition to wild-type (WT) Legionella pneumophila or bacteria deficient for flagellin (flaA) or motility (fliI) to assess the pathways responsible for NLRC4-dependent growth restriction in vivo and ex vivo. By comparing infections with WT L. pneumophila, fliI, and flaA, we found that flagellin and motility are important for the colonization of the protozoan host Acanthamoeba castellanii. However, in macrophages and mammalian lungs, flagellin expression abrogated bacterial replication. The flagellin-mediated growth restriction was dependent on NLRC4, and although it was recently demonstrated that NLRC4 is able to recognize bacteria independent of flagellin, we found that the NLRC4-dependent restriction of L. pneumophila multiplication was fully dependent on flagellin. By examining infected caspase-1−/− mice and macrophages with flaA, fliI, and WT L. pneumophila, we could detect greater replication of flaA, which suggests that caspase-1 only partially accounted for flagellin-dependent growth restriction. Conversely, WT L. pneumophila multiplied better in macrophages and mice deficient for NLRC4 compared with that in macrophages and mice deficient for caspase-1, supporting the existence of a novel caspase-1–independent response downstream of NLRC4. This response operated early after macrophage infection and accounted for the restriction of bacterial replication within bacteria-containing vacuoles. Collectively, our data indicate that flagellin is required for NLRC4-dependent responses to L. pneumophila and that NLRC4 triggers caspase-1–dependent and –independent responses for bacterial growth restriction in macrophages and in vivo.
Nature Communications | 2016
Karina F. Zoccal; Carlos A. Sorgi; Juliana I. Hori; Francisco Wanderley Garcia Paula-Silva; Eliane C. Arantes; Carlos H. Serezani; Dario S. Zamboni; Lúcia Helena Faccioli
Tityus serrulatus sting causes thousands of deaths annually worldwide. T. serrulatus-envenomed victims exhibit local or systemic reaction that culminates in pulmonary oedema, potentially leading to death. However, the molecular mechanisms underlying T. serrulatus venom (TsV) activity remain unknown. Here we show that TsV triggers NLRP3 inflammasome activation via K+ efflux. Mechanistically, TsV triggers lung-resident cells to release PGE2, which induces IL-1β production via E prostanoid receptor 2/4-cAMP-PKA-NFκB-dependent mechanisms. IL-1β/IL-1R actions account for oedema and neutrophil recruitment to the lungs, leading to TsV-induced mortality. Inflammasome activation triggers LTB4 production and further PGE2 via IL-1β/IL-1R signalling. Activation of LTB4-BLT1/2 pathway decreases cAMP generation, controlling TsV-induced inflammation. Exogenous administration confirms LTB4 anti-inflammatory activity and abrogates TsV-induced mortality. These results suggest that the balance between LTB4 and PGE2 determines the amount of IL-1β inflammasome-dependent release and the outcome of envenomation. We suggest COX1/2 inhibition as an effective therapeutic intervention for scorpion envenomation.
Molecular Microbiology | 2016
Ariane Cristina Mendes de Oliveira Bruder Nascimento; Thaila Fernanda dos Reis; Patrícia Alves de Castro; Juliana I. Hori; Vinícius Leite Pedro Bom; Leandro José de Assis; Leandra Naira Zambelli Ramalho; Marina Campos Rocha; Iran Malavazi; Neil Andrew Brown; Vito Valiante; Axel A. Brakhage; Daisuke Hagiwara; Gustavo H. Goldman
Here, we investigated which stress responses were influenced by the MpkC and SakA mitogen‐activated protein kinases of the high‐osmolarity glycerol (HOG) pathway in the fungal pathogen Aspergillus fumigatus. The ΔsakA and the double ΔmpkC ΔsakA mutants were more sensitive to osmotic and oxidative stresses, and to cell wall damaging agents. Both MpkC::GFP and SakA::GFP translocated to the nucleus upon osmotic stress and cell wall damage, with SakA::GFP showing a quicker response. The phosphorylation state of MpkA was determined post exposure to high concentrations of congo red and Sorbitol. In the wild‐type strain, MpkA phosphorylation levels progressively increased in both treatments. In contrast, the ΔsakA mutant had reduced MpkA phosphorylation, and surprisingly, the double ΔmpkC ΔsakA had no detectable MpkA phosphorylation. A. fumigatus ΔsakA and ΔmpkC were virulent in mouse survival experiments, but they had a 40% reduction in fungal burden. In contrast, the ΔmpkC ΔsakA double mutant showed highly attenuated virulence, with approximately 50% mice surviving and a 75% reduction in fungal burden. We propose that both cell wall integrity (CWI) and HOG pathways collaborate, and that MpkC could act by modulating SakA activity upon exposure to several types of stresses and during CW biosynthesis.
Expert Opinion on Biological Therapy | 2008
Patricia R. M. Souza; Carlos R. Zárate-Bladés; Juliana I. Hori; Simone G. Ramos; Deison Soares de Lima; Tatiana Vieira de Moraes Schneider; Rogério Silva Rosada; Lucimara Gaziola de la Torre; Maria Helena Andrade Santana; Izaíra T. Brandão; Ana Paula Masson; Arlete A. M. Coelho-Castelo; Vania L. D. Bonato; Fabio C. S. Galetti; Eduardo Dc Gonçalves; Domingos A. Botte; Jeanne B. de M. Machado; Célio Lopes Silva
Background: Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. Methods: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime–boost with subcutaneous BCG and intramuscular DNAhsp65. Results: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime–boost strategies. Conclusion: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine.
Eukaryotic Cell | 2015
Vinícius Leite Pedro Bom; Patrícia Alves de Castro; Lizziane K. Winkelströter; Marçal Mariné; Juliana I. Hori; Leandra Naira Zambelli Ramalho; Thaila Fernanda dos Reis; Maria Helena S. Goldman; Neil Andrew Brown; Ranjith Rajendran; Gordon Ramage; Louise A. Walker; Carol A. Munro; Marina Campos Rocha; Iran Malavazi; Daisuke Hagiwara; Gustavo H. Goldman
ABSTRACT Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.
PLOS ONE | 2015
Marina Campos Rocha; Krissia Franco de Godoy; Patrícia Alves de Castro; Juliana I. Hori; Vinícius Leite Pedro Bom; Neil Andrew Brown; Anderson Ferreira da Cunha; Gustavo H. Goldman; Iran Malavazi
Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcA G579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcA G579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcA G579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection.
Evidence-based Complementary and Alternative Medicine | 2013
Juliana I. Hori; Dario S. Zamboni; Daniel Blascke Carrão; Gustavo H. Goldman; Andresa Aparecida Berretta
Propolis extracts have gained the attention of consumers and researchers due to their unique chemical compositions and functional properties such as its anti-inflammatory activity. Recently, it was described a complex that is also important in inflammatory processes, named inflammasome. The inflammasomes are a large molecular platform formed in the cell cytosol in response to stress signals, toxins, and microbial infections. Once activated, the inflammasome induces caspase-1, which in turn induces the processing of inflammatory cytokines such as IL-1β and IL-18. So, to understand inflammasomes regulation becomes crucial to treat several disorders including autoinflammatory diseases. Since green propolis extracts are able to regulate inflammatory pathways, this work purpose was to investigate if this extract could also act on inflammasomes regulation. First, the extract was characterized and it demonstrated the presence of important compounds, especially Artepillin C. This extract was effective in reducing the IL-1β secretion in mouse macrophages and this reduction was correlated with a decrease in activation of the protease caspase-1. Furthermore, we found that the extract at a concentration of 30 μg/mL was not toxic to the cells even after a 18-hour treatment. Altogether, these data indicate that Brazilian green propolis (EPP-AF) extract has a role in regulating the inflammasomes.
G3: Genes, Genomes, Genetics | 2016
Marina Campos Rocha; João Henrique Tadini Marilhano Fabri; Krissia Franco de Godoy; Patrícia Alves de Castro; Juliana I. Hori; Anderson Ferreira da Cunha; Mark Arentshorst; Arthur F. J. Ram; Cees A. M. J. J. van den Hondel; Gustavo H. Goldman; Iran Malavazi
The Cell Wall Integrity (CWI) pathway is the primary signaling cascade that controls the de novo synthesis of the fungal cell wall, and in Saccharomyces cerevisiae this event is highly dependent on the RLM1 transcription factor. Here, we investigated the function of RlmA in the fungal pathogen Aspergillus fumigatus. We show that the ΔrlmA strain exhibits an altered cell wall organization in addition to defects related to vegetative growth and tolerance to cell wall-perturbing agents. A genetic analysis indicated that rlmA is positioned downstream of the pkcA and mpkA genes in the CWI pathway. As a consequence, rlmA loss-of-function leads to the altered expression of genes encoding cell wall-related proteins. RlmA positively regulates the phosphorylation of MpkA and is induced at both protein and transcriptional levels during cell wall stress. The rlmA was also involved in tolerance to oxidative damage and transcriptional regulation of genes related to oxidative stress adaptation. Moreover, the ΔrlmA strain had attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Our results suggest that RlmA functions as a transcription factor in the A. fumigatus CWI pathway, acting downstream of PkcA-MpkA signaling and contributing to the virulence of this fungus.
Evidence-based Complementary and Alternative Medicine | 2015
Felipe Galeti Miguel; Amanda Henriques Cavalheiro; Nathália Favaretto Spinola; Diego Luis Ribeiro; Gustavo Rafael Mazzaron Barcelos; Lusânia Maria Greggi Antunes; Juliana I. Hori; Franciane Marquele-Oliveira; Bruno Alves Rocha; Andresa Aparecida Berretta
Chamomile is a medicinal plant, which presents several biological effects, especially the anti-inflammatory effect. One of the compounds related to this effect is apigenin, a flavonoid that is mostly found in its glycosylated form, apigenin-7-glucoside (APG), in natural sources. However, the affectivity and safety of this glycoside have not been well explored for topical application. In this context, the aim of this work was to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC-DAD) method to quantify APG in chamomile preparations. Additionally, the safety and the anti-inflammatory potential of this flavonoid were verified. The RP-HPLC-DAD method was developed and validated with linearity at 24.0–36.0 μg/mL range (r = 0.9994). Intra- and interday precision (RSD) were 0.27–2.66% and accuracy was 98.27–101.21%. The validated method was applied in the analysis of chamomile flower heads, glycolic extract, and Kamillen cream, supporting the method application in the quality control of chamomile preparations. Furthermore, the APG safety was assessed by MTT cytotoxicity assay and mutagenic protocols and the anti-inflammatory activity was confirmed by a diminished TNF-α production showed by mice macrophages treated with APG following LPS treatment.