Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliana Mozer Sciani is active.

Publication


Featured researches published by Juliana Mozer Sciani.


Toxicon | 2010

Africanized honey bee (Apis mellifera) venom profiling: Seasonal variation of melittin and phospholipase A2 levels

Rui Seabra Ferreira Junior; Juliana Mozer Sciani; Rafael Marques-Porto; Airton Lourenço Junior; Ricardo de Oliveira Orsi; Benedito Barraviera; Daniel C. Pimenta

Apis mellifera venom is comprised basically of melittin, phospholipase A(2), histamine, hyaluronidase, catecholamine and serotonin. Some of these components have been associated with allergic reactions, amongst several other symptoms. On the other hand, bee mass stinging, caused by Africanized honey bee (AHB), is increasingly becoming a serious public health issue in Brazil; therefore, the development of efficient serum-therapies has become necessary. In this work, we have analyzed the venom composition of AHB in Brazil through one year. In order to verify the homogeneity of this venom, one specific hive was selected and the correlation with climatic parameters was assessed. It was possible to perceive a seasonal variation on the venom contents of melittin and phospholipase A(2). Moreover, both compounds presented a synchronized variation of their levels, with an increased production in the same months. This variation does not correlate or synchronize with any climatic parameter. Data on the variation of the AHB venom composition is necessary to guide future intra and inter species studies.


Peptides | 2007

Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis

Katia Conceição; Katsuhiro Konno; Robson L. Melo; Marta M. Antoniazzi; Carlos Jared; Juliana Mozer Sciani; Isaltino Marcelo Conceição; Benedito C. Prezoto; Antonio C.M. Camargo; Daniel C. Pimenta

Bradykinin potentiating peptides (BPPs) from Bothrops jararaca venom were first described in the middle of 1960s and were the first natural inhibitors of the angiotensin-converting enzyme (ACE). BPPs present a classical motif and can be recognized by their typical pyroglutamyl (Pyr)/proline rich sequences presenting, invariably, a proline residue at the C-terminus. In the present study, we describe the isolation and biological characterization of a novel BPP isolated from the skin secretion of the Brazilian tree-frog Phyllomedusa hypochondrialis. This new BPP, named Phypo Xa presents the sequence Pyr-Phe-Arg-Pro-Ser-Tyr-Gln-Ile-Pro-Pro and is able to potentiate bradykinin activities in vivo and in vitro, as well as efficiently and competitively inhibit ACE. This is the first canonical BPP (i.e. Pyr-Aaa(n)-Gln-Ile-Pro-Pro) to be found not only in the frog skin but also in any other natural source other than the snake venoms.


The Scientific World Journal | 2013

Differences and similarities among parotoid macrogland secretions in South American toads: a preliminary biochemical delineation.

Juliana Mozer Sciani; Claudia B. Angeli; Marta M. Antoniazzi; Carlos Jared; Daniel C. Pimenta

Amphibians are known by cutaneous glands, spread over the skin, containing toxins (proteins, peptides, biogenic amines, steroidal bufadienolides, and alkaloids) used as chemical defense against predators and microbial infection. Toads are characterized by the presence of parotoid macroglands. The common toads have lately been divided into two genera: Bufo (Europe, Asia, and Africa) and Rhinella (South America). Basal Rhaebo genus is exclusively of Central America and Amazon region. Although Rhinella and Rhaebo are related, species may share differences due to the diversity of environments that they live in. In this work, we have performed a biochemical characterization of the components of the poison of eight Rhinella species and one Rhaebo by means of RP-HPLC with either UV or MS detection and by SDS-PAGE, in order to verify whether phylogenetic and biological differences, such as habitat, diet, and defensive strategies, between them may also be reflected in poison composition. Although some components were common among the secretions, we were able to identify exclusive molecules to some species. The fact that closely related animals living in different habitats secrete different molecules into the skin is an indication that biological features, and not only evolution, seem to directly influence the skin secretion composition.


Journal of Morphology | 2012

Skin glands, poison and mimicry in dendrobatid and leptodactylid amphibians

Ivan Prates; Marta M. Antoniazzi; Juliana Mozer Sciani; Daniel C. Pimenta; Luís Felipe Toledo; Célio F. B. Haddad; Carlos Jared

In amphibians, secretions of toxins from specialized skin poison glands play a central role in defense against predators. The production of toxic secretions is often associated with conspicuous color patterns that warn potential predators, as it is the case of many dendrobatid frogs, including Ameerega picta. This species resembles the presumably nontoxic Leptodactylus lineatus. This study tests for mimicry by studying the morphology and distribution of skin glands, components of skin secretion, and defensive behavior. Dorsal skin was studied histologically and histochemically, and skin secretions were submitted to sodium dodecyl sulfate polyacrylamide gel electrophoresis, reversed phase high performance liquid chromatography and assays for proteolytic activity. We found that poison glands in A. picta are filled with nonprotein granules that are rich in carbohydrates, while L. lineatus glands present protein granules. Accordingly, great amounts of proteins, at least some of them enzymes, were found in the poison of L. lineatus but not in that of A. picta. Both species differ greatly on profiles of gland distribution: In L. lineatus, poison glands are organized in clusters whose position coincides with colored elements of the dorsum. These regions are evidenced through a set of displays, suggesting that poison location is announced to predators through skin colors. In contrast, A. picta presents lower densities of glands, distributed homogeneously. This simpler profile suggests a rather qualitative than quantitative investment in chemical defense, in agreement with the high toxicity attributed to dendrobatids in general. Our data suggest that both species are toxic or unpalatable and transmit common warning signals to predators, which represents a case of Müllerian mimicry. J. Morphol. 2012.


Biochemical Pharmacology | 2010

Bradykinin-related peptides in the venom of the solitary wasp Cyphononyx fulvognathus

Gisele Picolo; Miki Hisada; Analue B. Moura; Maurício F.M. Machado; Juliana Mozer Sciani; Isaltino Marcelo Conceição; Robson L. Melo; Vitor Oliveira; Maria Teresa R. Lima-Landman; Yara Cury; Katsuhiro Konno; Mirian A.F. Hayashi

Bradykinin (BK) and its related peptides are widely distributed in venomous animals, including wasps. In fact, we have previously purified a novel BK-related peptide (BRP) named Cd-146 and the threonine(6)-bradykinin (Thr(6)-BK) from the venom of the solitary wasp Cyphononyx fulvognathus. Further survey of this same wasp venom extract allowed the structural characterization of two other novel BRPs, named here as fulvonin and cyphokinin. Biochemical characterization performed here showed that although the high primary structure similarity observed with BK, these wasp peptides are not good substrates for angiotensin I-converting enzyme (ACE) acting more likely as inhibitors of this enzyme. In pharmacological assays, only those more structurally similar to BK, namely cyphokinin and Thr(6)-BK, were able to promote the contraction of guinea-pig ileum smooth muscle preparations, which was completely blocked by the B(2) receptors antagonist HOE-140 in the same way as observed for BK. Only fulvonin was shown to potentiate BK-elicited smooth muscle contraction. Moreover, the 2 new wasp BRPs, namely fulvonin and cyphokinin, as well as Cd-146 and Thr(6)-BK, showed hyperalgesic effect in the rat paw pressure test after intraplantar injection. This effect was shown here to be due to the action of these peptides on BK receptors, since the hyperalgesia induced by both Cd-146 and fulvonin was blocked by B(1) receptor antagonist, while the effect of both cyphokinin and Thr(6)-BK was reversed by B(2) antagonist. This data give support to a better understanding of the function and targets of the kinin-related peptides widely found in several insect venoms.


Peptides | 2010

Identification of a novel melittin isoform from Africanized Apis mellifera venom.

Juliana Mozer Sciani; Rafael Marques-Porto; Airton Lourenço Junior; Ricardo de Oliveira Orsi; Rui Seabra Ferreira Junior; Benedito Barraviera; Daniel C. Pimenta

Apis mellifera, the European honey bee, is perhaps the most studied insect in the Apidae family. Its venom is comprised basically of melittin, phospholipase A(2), histamine, hyaluronidase, cathecolamines and serotonin. Some of these components have been associated to allergic reactions, among several other symptoms. On the other hand, bee mass-stinging is increasingly becoming a serious public health issue; therefore, the development of efficient serum-therapies has become necessary, with a consequent better characterization of the venom. In this work, we report the isolation and biochemical characterization of melittin-S, an isoform of melittin comprising a Ser residue at the 10th position, from the venom of Africanized A. mellifera. This peptide demonstrated to be less hemolytic than melittin and to adopt a less organized secondary structure, as assessed by circular dichroism spectroscopy. Melittin-S venom contents varied seasonally, and the maximum secretion occurred during the (southern) winter months. Data on the variation of the honey bee venom composition are necessary to guide future immunological studies, aiming for the development of an efficient anti-serum against Africanized A. mellifera venom and, consequently, an effective treatment for the victims of mass-stinging.


PLOS ONE | 2014

Dynein Function and Protein Clearance Changes in Tumor Cells Induced by a Kunitz-Type Molecule, Amblyomin-X

Mário Thiego Fernandes Pacheco; Carolina Maria Berra; Katia L. P. Morais; Juliana Mozer Sciani; Vania G. Branco; Rosemary Viola Bosch; Ana Marisa Chudzinski-Tavassi

Amblyomin-X is a Kunitz-type recombinant protein identified from the transcriptome of the salivary glands of the tick Amblyomma cajennense and has anti-coagulant and antitumoral activity. The supposed primary target of this molecule is the proteasome system. Herein, we elucidated intracellular events that are triggered by Amblyomin-X treatment in an attempt to provide new insight into how this serine protease inhibitor, acting on the proteasome, could be comparable with known proteasome inhibitors. The collective results showed aggresome formation after proteasome inhibition that appeared to occur via the non-exclusive ubiquitin pathway. Additionally, Amblyomin-X increased the expression of various chains of the molecular motor dynein in tumor cells, modulated specific ubiquitin linkage signaling and inhibited autophagy activation by modulating mTOR, LC3 and AMBRA1 with probable dynein involvement. Interestingly, one possible role for dynein in the mechanism of action of Amblyomin-X was in the apoptotic response and its crosstalk with autophagy, which involved the factor Bim; however, we observed no changes in the apoptotic response related to dynein in the experiments performed. The characteristics shared among Amblyomin-X and known proteasome inhibitors included NF-κB blockage and nascent polypeptide-dependent aggresome formation. Therefore, our study describes a Kunitz-type protein that acts on the proteasome to trigger distinct intracellular events compared to classic known proteasome inhibitors that are small-cell-permeable molecules. In investigating the experiments and literature on Amblyomin-X and the known proteasome inhibitors, we also found differences in the structures of the molecules, intracellular events, dynein involvement and tumor cell type effects. These findings also reveal a possible new target for Amblyomin-X, i.e., dynein, and may serve as a tool for investigating tumor cell death associated with proteasome inhibition.


Journal of Venomous Animals and Toxins Including Tropical Diseases | 2014

Bufotenine is able to block rabies virus infection in BHK-21 cells

Hugo Vigerelli; Juliana Mozer Sciani; Carlos Jared; Marta M. Antoniazzi; Graciane Maria Medeiros Caporale; Andréa de Cássia Rodrigues da Silva; Daniel C. Pimenta

BackgroundRabies is a fatal zoonotic neglected disease that occurs in more than 150 countries, and kills more than 55.000 people every year. It is caused by an enveloped single stranded RNA virus that affects the central nervous system, through an infection initiated by the muscular nicotinic acetylcholine receptor, according to many authors. Alkaloids, such as acetylcholine, are widespread molecules in nature. They are present in numerous biological fluids, including the skin secretion of many amphibians, in which they act (together with proteins, peptides and steroids) as protection agents against predators and/or microorganisms. Among those amphibians that are rich in alkaloids, there is the genus Rhinella.MethodsBufotenine was isolated from Rhinela jimi skin secretion after a liquid-liquid partition (H2O:CH2Cl2) and reversed phase high-performance liquid chromatography analyses (RP-HPLC). Bufotenine was also extracted from seeds of Anadenanthera colubrina in acetone solution and purified by RP-HPLC, as well. Structural characterization was performed by mass spectrometry and nuclear magnetic resonance analyses. Cytotoxic tests of bufotenine were performed over baby hamster kidney (BHK-21) cells using MTT test. For the antiviral activity, Rabies virus strain Pasteur vaccine (PV) was used on fluorescence inhibition test and fluorescent foci inhibition test, with both simultaneous and time course treatment of the cells with the virus and bufotenine.ResultsIn the present work we describe the effects of bufotenine, obtained either from toads or plants, that can inhibit the penetration of rabies virus in mammalian cells through an apparent competitive mechanism by the nicotinic acetylcholine receptor. Moreover, this inhibition was dose- and time-dependent, pointing out to a specific mechanism of action.ConclusionsThis work do not present or propose bufotenine as a drug for the treatment of rabies due to the hallucinogen and psychotropic effects of the molecule. However, continued studies in the elucidation of the antiviral mechanism of this molecule, may lead to the choice or development of a tryptamine analogue presenting potential clinical use.


Experimental Biology and Medicine | 2011

Pro-inflammatory effects of the aqueous extract of Echinometra lucunter sea urchin spines

Juliana Mozer Sciani; Bianca Cestari Zychar; Luis Roberto de Camargo Gonçalves; Thiago de Oliveira Nogueira; Renata Giorgi; Daniel C. Pimenta

The sea urchin, Echinometra lucunter, can be found along the Western Central Atlantic shores. In Brazil, it is responsible by circa 50% of the accidents caused by marine animals. The symptoms usually surpass trauma and may be pathologically varied and last differently, ranging from spontaneous healing in a few days, to painful consequences lasting for weeks. In this work, we have mimicked the sea urchin accident by administering an aqueous extract of the spine into mice and rats and evaluated the pathophysiological developments. Our data clearly indicate that the sea urchin accident is indeed a pro-inflammatory event, triggered by toxins present in the spine that can cause edema and alteration in the leukocyte–endothelial interaction. Moreover, the spine extract was shown to exhibit a hyperalgesic effect. The extract is rich in proteins, as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but also contains other molecules that can be analyzed by reversed phase high-performance liquid chromatography. Altogether, these effects corroborate that an E. lucunter encounter is an accident and not an incident, as frequently reported by the victims.


Experimental Cell Research | 2016

Specific role of cytoplasmic dynein in the mechanism of action of an antitumor molecule, Amblyomin-X

Mário Thiego Fernandes Pacheco; Katia L. P. Morais; Carolina Maria Berra; Marilene Demasi; Juliana Mozer Sciani; Vania G. Branco; Rosemary Viola Bosch; Asif Iqbal; Ana Marisa Chudzinski-Tavassi

The Kunitz-type recombinant protein, Amblyomin-X, is an antitumor recombinant molecule from a cDNA library prepared from the salivary glands of the tick Amblyomma cajennense. The primary target of this protein appears to be the proteasome. Amblyomin-X increased gene and protein expression of distinct subunits of the molecular motor dynein, which plays a key role in the intracellular transport. Herein, Amblyomin-X was specifically taken up by tumor cells through lipid-raft endocytic pathways, but not by fibroblasts. Moreover, dynein inhibitor, ciliobrevin A, decreased Amblyomin-X uptake by tumor cells. Furthermore, incubation of tumor cells with Amblyomin-X inhibited trypsin-like activity of the proteasome, which was restored upon pretreatment with ciliobrevin A. Only in tumor cells treated with Amblyomin-X, we identified proteins bounds to dynein that are related to aggresome formation, autophagy inhibition, and early and recycling endosome markers. In addition, Amblyomin-X was found to interact with dynein, increased Rab11A protein expression and Rab11A co-localization with the light-intermediate chain 2 (LIC2) of dynein. Thereby, the results provide new insights on the antitumor mechanism of Amblyomin-X and reveal an unsuspected role of cytoplasmic dynein in its uptake, intracellular trafficking and pro-apoptotic action.

Collaboration


Dive into the Juliana Mozer Sciani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katia L. P. Morais

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge