Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robson L. Melo is active.

Publication


Featured researches published by Robson L. Melo.


Molecular & Cellular Proteomics | 2012

Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and Peptidomes

Alexandre K. Tashima; André Zelanis; Eduardo S. Kitano; Danielle Ianzer; Robson L. Melo; Vanessa Rioli; Sávio Stefanini Sant'Anna; Ana Clara Guerrini Schenberg; Antonio C.M. Camargo; Solange M.T. Serrano

Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 l-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from l-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4′ sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures.


Journal of Biological Chemistry | 2009

Argininosuccinate Synthetase Is a Functional Target for a Snake Venom Anti-hypertensive Peptide ROLE IN ARGININE AND NITRIC OXIDE PRODUCTION

Juliano R. Guerreiro; Claudiana Lameu; Eduardo Fontana de Oliveira; Clécio F. Klitzke; Robson L. Melo; Edlaine Linares; Ohara Augusto; Jay W. Fox; Ivo Lebrun; Solange M.T. Serrano; Antonio C.M. Camargo

Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-de pend ent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, α-methyl-dl-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.


Peptides | 2007

Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis

Katia Conceição; Katsuhiro Konno; Robson L. Melo; Marta M. Antoniazzi; Carlos Jared; Juliana Mozer Sciani; Isaltino Marcelo Conceição; Benedito C. Prezoto; Antonio C.M. Camargo; Daniel C. Pimenta

Bradykinin potentiating peptides (BPPs) from Bothrops jararaca venom were first described in the middle of 1960s and were the first natural inhibitors of the angiotensin-converting enzyme (ACE). BPPs present a classical motif and can be recognized by their typical pyroglutamyl (Pyr)/proline rich sequences presenting, invariably, a proline residue at the C-terminus. In the present study, we describe the isolation and biological characterization of a novel BPP isolated from the skin secretion of the Brazilian tree-frog Phyllomedusa hypochondrialis. This new BPP, named Phypo Xa presents the sequence Pyr-Phe-Arg-Pro-Ser-Tyr-Gln-Ile-Pro-Pro and is able to potentiate bradykinin activities in vivo and in vitro, as well as efficiently and competitively inhibit ACE. This is the first canonical BPP (i.e. Pyr-Aaa(n)-Gln-Ile-Pro-Pro) to be found not only in the frog skin but also in any other natural source other than the snake venoms.


Peptides | 2006

Orpotrin: A novel vasoconstrictor peptide from the venom of the Brazilian Stingray Potamotrygon gr. orbignyi

Katia Conceição; Katsuhiro Konno; Robson L. Melo; Elineide Eugênio Marques; Clélia Akiko Hiruma-Lima; Carla Lima; Michael Richardson; Daniel C. Pimenta; Mônica Lopes-Ferreira

Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. In order to analyze in detail the peptides and small proteins of crude samples, techniques such as chromatography and mass spectrometry have been employed. The present study describes the isolation, biochemical characterization, and sequence determination of a novel peptide, named Orpotrin from the venom of Potamotrygon gr. orbignyi. The natural peptide was shown to be effective in microcirculatory environment causing a strong vasoconstriction. The peptide was fully sequenced by de novo amino acid sequencing with mass spectrometry and identified as the novel peptide. Its amino acid sequence, HGGYKPTDK, aligns only with creatine kinase residues 97-105, but has no similarity to any bioactive peptide. Therefore, possible production of this peptide from creatine kinase by limited proteolysis is discussed. Taken together, the results indicate the usefulness of this single-step approach for low molecular mass compounds in complex samples such as venoms.


FEBS Letters | 2008

Activation of leukocyte rolling by the cysteine‐rich domain and the hyper‐variable region of HF3, a snake venom hemorrhagic metalloproteinase

Milene C. Menezes; Adriana Franco Paes Leme; Robson L. Melo; Carlos A. Silva; Maisa Splendore Della Casa; Fernanda Miriane Bruni; Carla Lima; Mônica Lopes-Ferreira; Antonio C.M. Camargo; Jay W. Fox; Solange M.T. Serrano

The functionality of the disintegrin‐like/cysteine‐rich domains of snake venom metalloproteinases (SVMPs) has been shown to reside in the cysteine‐rich region, which can interact with VWA‐containing proteins. Recently, the hyper‐variable region (HVR) of the cysteine‐rich domain was suggested to constitute a potential protein–protein adhesive interface. Here we show that recombinant proteins of HF3, a hemorrhagic P‐III SVMP, containing the cysteine‐rich domain (disintegrin‐like/cysteine‐rich and cysteine‐rich proteins) but not the disintegrin‐like protein were able to significantly increase leukocyte rolling in the microcirculation. Peptides from the HVR also promoted leukocyte rolling and this activity was inhibited by anti‐alphaM/beta2 antibodies. These results show, for the first time, that the cysteine‐rich domain and its HVR play a role in triggering pro‐inflammatory effects mediated by integrins.


Biochemical Pharmacology | 2010

Bradykinin-related peptides in the venom of the solitary wasp Cyphononyx fulvognathus

Gisele Picolo; Miki Hisada; Analue B. Moura; Maurício F.M. Machado; Juliana Mozer Sciani; Isaltino Marcelo Conceição; Robson L. Melo; Vitor Oliveira; Maria Teresa R. Lima-Landman; Yara Cury; Katsuhiro Konno; Mirian A.F. Hayashi

Bradykinin (BK) and its related peptides are widely distributed in venomous animals, including wasps. In fact, we have previously purified a novel BK-related peptide (BRP) named Cd-146 and the threonine(6)-bradykinin (Thr(6)-BK) from the venom of the solitary wasp Cyphononyx fulvognathus. Further survey of this same wasp venom extract allowed the structural characterization of two other novel BRPs, named here as fulvonin and cyphokinin. Biochemical characterization performed here showed that although the high primary structure similarity observed with BK, these wasp peptides are not good substrates for angiotensin I-converting enzyme (ACE) acting more likely as inhibitors of this enzyme. In pharmacological assays, only those more structurally similar to BK, namely cyphokinin and Thr(6)-BK, were able to promote the contraction of guinea-pig ileum smooth muscle preparations, which was completely blocked by the B(2) receptors antagonist HOE-140 in the same way as observed for BK. Only fulvonin was shown to potentiate BK-elicited smooth muscle contraction. Moreover, the 2 new wasp BRPs, namely fulvonin and cyphokinin, as well as Cd-146 and Thr(6)-BK, showed hyperalgesic effect in the rat paw pressure test after intraplantar injection. This effect was shown here to be due to the action of these peptides on BK receptors, since the hyperalgesia induced by both Cd-146 and fulvonin was blocked by B(1) receptor antagonist, while the effect of both cyphokinin and Thr(6)-BK was reversed by B(2) antagonist. This data give support to a better understanding of the function and targets of the kinin-related peptides widely found in several insect venoms.


FEBS Journal | 2008

A novel bradykinin potentiating peptide isolated from Bothrops jararacussu venom using catallytically inactive oligopeptidase EP24.15

Vanessa Rioli; Benedito C. Prezoto; Katsuhiro Konno; Robson L. Melo; Clécio F. Klitzke; Emer S. Ferro; Mônica Ferreira-Lopes; Antonio C.M. Camargo; Fernanda C.V. Portaro

Characterization of the peptide content of venoms has a number of potential benefits for basic research, clinical diagnosis, development of new therapeutic agents, and production of antiserum. Here, we use a substrate‐capture assay that employs a catalytically inactive mutant of thimet oligopeptidase (EC 3.4.24.15; EP24.15) to identify novel bioactive peptides in Bothrops jararacussu venom. Of the peptides captured with inactive EP24.15 and identified by mass spectrometry, three were previously identified bradykinin‐potentiating peptides (BPP),


Molecular and Biochemical Parasitology | 2001

Analysis of the S 2 subsite specificities of the recombinant cysteine proteinases CPB of Leishmania mexicana, and cruzain of Trypanosoma cruzi, using fluorescent substrates containing non-natural basic amino acids

Lira C. Alves; Robson L. Melo; Maria Helena Sedenho Cezari; Sanya J. Sanderson; Jeremy C. Mottram; Graham H. Coombs; Luiz Juliano; Maria A. Juliano

We have explored the specificity of the S(2) subsite of recombinant cysteine proteinases from Leishmania mexicana (CPB2.8 Delta CTE) and from Trypanosoma cruzi (cruzain) employing a series of fluorogenic substrates based on the peptide Bz-F-R-MCA, in which Bz is the benzoyl group and the Phe residue has been substituted for by Arg, His and non-natural basic amino acids that combine a basic group with an aromatic or hydrophobic group at the side chain: 4-aminomethyl-phenylalanine (Amf), 4-guanidine phenylalanine (Gnf), 4-aminomethyl-N-isopropyl-phenylalanine (Iaf), 3-pyridyl-alanine (Pya), 4-piperidinyl-alanine (Ppa), 4-aminomethyl-cyclohexyl-alanine (Ama), and 4-aminocyclohexyl-alanine (Aca). Bz-F-R-MCA was hydrolyzed well by CPB2.8 Delta CTE and cruzain, but all the substitutions of Phe resulted in less susceptible substrates for the two enzymes. CPB2.8 Delta CTE has a restricted specificity to hydrophobic side chains as with cathepsin L. However, the peptides with the residues Amf and Ama presented higher affinity to CPB2.8 Delta CTE, and the latter was an inhibitor of the enzyme. Although, cruzain accepts basic as well as hydrophobic residues at the S(2) subsite, it is more restrictive than cathepsin B and no inhibitor was found amongst the examined peptides.


Biochemical Journal | 2004

Differences in substrate and inhibitor sequence specificity of human, mouse and rat tissue kallikreins

Sandro E. Fogaça; Robson L. Melo; Daniel C. Pimenta; Kazuo Hosoi; Luiz Juliano; Maria A. Juliano

The kininogenase activities of mouse (mK1), rat (rK1) and human (hK1) tissue kallikreins were assayed with the bradykinin-containing synthetic peptides Abz-MTEMARRPPGFSPFRSVTVQNH2 (where Abz stands for o-aminobenzoyl) and Abz-MTSVIRRPPGFSPFRAPRV-NH2, which correspond to fragments Met374-Gln393 and Met375-Val393 of mouse and rat LMWKs (low-molecular-mass kininogens) with the addition of Abz. Bradykinin was released from these peptides by the mK1- and rK1-mediated hydrolysis of Arg-Arg and Arg-Ser (or Arg-Ala) peptide bonds. However, owing to preferential hydrolysis of Phe-Arg compared with the Arg-Ala bond in the peptide derived from rat LMWK, hK1 released bradykinin only from the mouse LMWK fragment and preferentially released des-[Arg9]bradykinin from the rat LMWK fragment (Abz-MTSVIRRPPGFSPFRAPRV-NH2). The formation of these hydrolysis products was examined in more detail by determining the kinetic parameters for the hydrolysis of synthetic, internally quenched fluorescent peptides containing six N- or C-terminal amino acids of bradykinin added to the five downstream or upstream residues of mouse and rat kininogens respectively. One of these peptides, Abz-GFSPFRAPRVQ-EDDnp (where EDDnp stands for ethylenediamine 2,4-dinitrophenyl), was preferentially hydrolysed at the Phe-Arg bond, confirming the potential des-[Arg9]bradykinin-releasing activity of hK1 on rat kininogen. The proline residue that is two residues upstream of bradykinin in rat kininogen is, in part, responsible for this pattern of hydrolysis, since the peptide Abz-GFSPFRASRVQ-EDDnp was preferentially cleaved at the Arg-Ala bond by hK1. Since this peptidase accepts the arginine or phenylalanine residue at its S1 subsite, this preference seems to be determined by the prime site of the substrates. These findings also suggested that the effects observed in rats overexpressing hK1 should consider the activation of B1 receptors by des-[Arg9]bradykinin. For further comparison, two short internally quenched fluorescent peptides that bind to hK1 with affinity in the nM range and some inhibitors described previously for hK1 were also assayed with mK1 and rK1.


Peptides | 2009

Characterization of a new bioactive peptide from Potamotrygon gr. orbignyi freshwater stingray venom

Katia Conceição; Juliane M. Santos; Fernanda Miriane Bruni; Clécio F. Klitzke; Elineide Eugênio Marques; Márcia H. Borges; Robson L. Melo; Mônica Lopes-Ferreira

Brazilian freshwater stingrays, Potamotrygon gr. orbigyni, are relatively common in the middle-western regions of Brazil, where they are considered an important public health threat. In order to identify some of their naturally occurring toxin peptides available in very low amounts, we combine analytical protocols such as reversed-phase high-performance liquid chromatography (RP-HPLC), followed by a biological microcirculatory screening and mass spectrometry analysis. Using this approach, one bioactive peptide was identified and characterized, and two analogues were synthesized. The natural peptide named Porflan has the primary structure ESIVRPPPVEAKVEETPE (MW 2006.09 Da) and has no similarity with any bioactive peptide or protein found in public data banks. Bioassay protocols characterized peptides as presenting potent activity in a microcirculatory environment. The primary sequences and bioassay results, including interactions with the membrane phospholipids, suggest that these toxins are a new class of fish toxins, directly involved in the inflammatory processes of a stingray sting.

Collaboration


Dive into the Robson L. Melo's collaboration.

Top Co-Authors

Avatar

Luiz Juliano

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Maria A. Juliano

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lira C. Alves

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge