Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliana T. Mesquita is active.

Publication


Featured researches published by Juliana T. Mesquita.


Journal of Natural Products | 2015

Anti-parasitic Guanidine and Pyrimidine Alkaloids from the Marine Sponge Monanchora arbuscula

Mario F. C. Santos; Philip M. Harper; David E. Williams; Juliana T. Mesquita; Erika G. Pinto; Thais A. Costa-Silva; Eduardo Hajdu; Antonio G. Ferreira; Raquel Alves dos Santos; Patrick J. Murphy; Raymond J. Andersen; Andre G. Tempone; Roberto G. S. Berlinck

HPLC-UV-ELSD-MS-guided fractionation of the anti-parasitic extract obtained from the marine sponge Monanchora arbuscula, collected off the southeastern coast of Brazil, led to the isolation of a series of guanidine and pyrimidine alkaloids. The pyrimidines monalidine A (1) and arbusculidine A (7), as well as the guanidine alkaloids batzellamide A (8) and hemibatzelladines 9-11, represent new minor constituents that were identified by analysis of spectroscopic data. The total synthesis of monalidine A confirmed its structure. Arbusculidine A (7), related to the ptilocaulin/mirabilin/netamine family of tricyclic guanidine alkaloids, is the first in this family to possess a benzene ring. Batzellamide A (8) and hemibatzelladines 9-11 represent new carbon skeletons that are related to the batzelladines. Evaluation of the anti-parasitic activity of the major known metabolites, batzelladines D (12), F (13), L (14), and nor-L (15), as well as of synthetic monalidine A (1), against Trypanosoma cruzi and Leishmania infantum is also reported, along with a detailed investigation of parasite cell-death pathways promoted by batzelladine L (14) and norbatzelladine L (15).


PLOS Neglected Tropical Diseases | 2013

Soulamarin Isolated from Calophyllum brasiliense (Clusiaceae) Induces Plasma Membrane Permeabilization of Trypanosoma cruzi and Mytochondrial Dysfunction

Alexandre Rea; Andre G. Tempone; Erika G. Pinto; Juliana T. Mesquita; Eliana Rodrigues; Luciana Grus M. Silva; Patricia Sartorelli; João Henrique G. Lago

Chagas disease is caused by the parasitic protozoan Trypanosoma cruzi. It has high mortality as well as morbidity rates and usually affects the poorer sections of the population. The development of new, less harmful and more effective drugs is a promising research target, since current standard treatments are highly toxic and administered for long periods. Fractioning of methanol (MeOH) extract of the stem bark of Calophyllum brasiliense (Clusiaceae) resulted in the isolation of the coumarin soulamarin, which was characterized by one- and two-dimensional 1H- and 13C NMR spectroscopy as well as ESI mass spectrometry. All data obtained were consistent with a structure of 6-hydroxy-4-propyl-5-(3-hydroxy-2-methyl-1-oxobutyl)-6″,6″-dimethylpyrane-[2″,3″:8,7]-benzopyran-2-one for soulamarin. Colorimetric MTT assays showed that soulamarin induces trypanocidal effects, and is also active against trypomastigotes. Hemolytic activity tests showed that soulamarin is unable to induce any observable damage to erythrocytes (cmax. = 1,300 µM). The lethal action of soulamarin against T. cruzi was investigated by using amino(4-(6-(amino(iminio)methyl)-1H-indol-2-yl)phenyl)methaniminium chloride (SYTOX Green and 1H,5H,11H,15H-Xantheno[2,3,4-ij:5,6,7-i′j′]diquinolizin-18-ium, 9-[4-(chloromethyl)phenyl]-2,3,6,7,12,13,16,17-octahydro-chloride (MitoTracker Red) as fluorimetric probes. With the former, soulamarin showed dose-dependent permeability of the plasma membrane, relative to fully permeable Triton X-100-treated parasites. Spectrofluorimetric and fluorescence microscopy with the latter revealed that soulamarin also induced a strong depolarization (ca. 97%) of the mitochondrial membrane potential. These data demonstrate that the lethal action of soulamarin towards T. cruzi involves damages to the plasma membrane of the parasite and mitochondrial dysfunction without the additional generation of reactive oxygen species, which may have also contributed to the death of the parasites. Considering the unique mitochondrion of T. cruzi, secondary metabolites of plants affecting the bioenergetic system as soulamarin may contribute as scaffolds for the design of novel and selective drug candidates for neglected diseases, mainly Chagas disease.


Veterinary Parasitology | 2016

An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis

Mariana C. Duarte; Letícia Martins dos Reis Lage; Daniela P. Lage; Juliana T. Mesquita; Beatriz C.S. Salles; Stefânia N. Lavorato; Daniel Menezes-Souza; Bruno Mendes Roatt; Ricardo José Alves; Carlos Alberto Pereira Tavares; Andre G. Tempone; Eduardo Antonio Ferraz Coelho

The development of new therapeutic strategies to treat leishmaniasis has become a priority. In the present study, the antileishmanial activity of 8-hydroxyquinoline (8-HQN) was investigated against in vitro promastigotes and in vivo intra-macrophage amastigotes of three Leishmania species: Leishmania amazonensis, Leishmania infantum and Leishmania braziliensis. Studies were performed to establish the 50% Leishmania inhibitory concentration (IC50) of 8-HQN, as well as its 50% cytotoxic concentration (CC50) on murine macrophages and in human red blood cells. The inhibition of macrophages infection was also evaluated using parasites that were pre-treated with 8-HQN. The effects of this compound on nitric oxide (NO) production and in the mitochondrial membrane potential were also evaluated. Finally, the therapeutic efficacy of 8-HQN was assessed in a known murine model, L. amazonensis-chronically infected BALB/c mice. Our results showed that 8-HQN was effective against promastigote and amastigote stages of all tested Leishmania species, presenting a selectivity index of 328.0, 62.0 and 47.0 for L. amazonensis, L. infantum and L. braziliensis, respectively. It was effective in treating infected macrophages, as well as in preventing the infection of these cells using pre-treated parasites. In addition, 8-HQN caused an alteration in the mitochondrial membrane potential of the parasites. When administered at 10mg/kg body weight/day by subcutaneous route, this product was effective in reducing the lesion diameter, as well as the parasite load in evaluated tissues and organs of infected animals. The results showed the in vitro and in vivo efficacy of 8-HQN against three different Leishmania species causing tegumentary and/or visceral leishmaniasis, and it could well be used for future therapeutic optimization studies to treat leishmaniasis.


Journal of Natural Products | 2016

Analogues of Marine Guanidine Alkaloids Are in Vitro Effective against Trypanosoma cruzi and Selectively Eliminate Leishmania (L.) infantum Intracellular Amastigotes.

Ligia F. Martins; Juliana T. Mesquita; Erika G. Pinto; Thais A. Costa-Silva; Samanta Etel Treiger Borborema; Andres J. Galisteo Junior; Bruno J. Neves; Carolina H. Andrade; Zainab Al Shuhaib; Elliot L. Bennett; Gregory P. Black; Philip M. Harper; Daniel M. Evans; Hisham S. Fituri; John P. Leyland; Claire Martin; Terence D. Roberts; Andrew J. Thornhill; Stephen A. Vale; Andrew Howard-Jones; Dafydd A. Thomas; Harri Lloyd Williams; Larry E. Overman; Roberto G. S. Berlinck; Patrick J. Murphy; Andre G. Tempone

Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.


Acta Tropica | 2013

Lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide via induction of oxidative stress in Leishmania (L.) infantum.

Juliana T. Mesquita; Erika G. Pinto; Noemi Nosomi Taniwaki; Andrés Jimenez Galisteo; Andre G. Tempone

Studying the cellular death pathways in Leishmania is an important aspect of discovering new antileishmanials. While using a drug repositioning approach, the lethal action of the nitrothiazolyl-salicylamide derivative nitazoxanide (NTZ) was investigated against Leishmania (L.) infantum. The in vitro antileishmanial activity and cytotoxicity were assessed using both parasite stages and mammalian NCTC cells, respectively. The lethal action of NTZ was investigated by detecting the phosphatidylserine (PS) exposure, reactive oxygen species (ROS) regulation, plasma membrane permeability, mitochondrial membrane potential and ultrastructural modifications by transmission electron microscopy. NTZs activity against L. infantum was confirmed, producing IC50 values of 42.71μg/mL against promastigotes and 6.78μg/mL against intracellular amastigotes. NTZ rapidly altered the cellular metabolism of promastigotes by depolarising the mitochondrial membrane and up-regulating the reactive oxygen species (ROS). In addition, the flow cytometry data revealed an intense and time-dependent exposure of PS in promastigotes. When using SYTOX(®) Green as a fluorescent probe, NTZ demonstrated no interference in plasma membrane permeability. The ultrastructural alterations in promastigotes were time-dependent and caused chromatin condensation, plasma membrane blebbing and mitochondrial swelling. These data suggest that NTZ induced oxidative stress in L. (L.) infantum and might be a useful compound for investigating new therapeutic targets.


Acta Tropica | 2014

Combination therapy with nitazoxanide and amphotericin B, Glucantime®, miltefosine and sitamaquine against Leishmania (Leishmania) infantum intracellular amastigotes.

Juliana T. Mesquita; Andre G. Tempone; Juliana Q. Reimão

Leishmaniasis is a neglected disease that affects poorest population mainly in developing countries, representing one of the major causes of mortality and morbidity. Therefore, efforts to find new chemotherapeutics for leishmaniasis remain a priority. Previous reports demonstrated the in vitro and in vivo antileishmanial activity of nitazoxanide, an antiprotozoan agent used in the treatment of infectious diarrhea. The present work was carried out to determine the effect of nitazoxanide in combination with current antileishmanial drugs. Mouse peritoneal macrophages were infected with Leishmania (Leishmania) infantum amastigotes in order to calculate the 50% and 90% inhibitory concentration values. Drug interactions were assessed with fixed ratio isobologram method and fractional inhibitory concentrations (FIC50 and FIC90); sum of FIC (ΣFIC50 and ΣFIC90) and overall mean ΣFIC (xΣFIC50 and xΣFIC90) were calculated for each combination. The nature of interactions was classified according to the xΣFIC50 and xΣFIC90. The combination between nitazoxanide and amphotericin B, Glucantime(®), miltefosine and sitamaquine showed xΣFIC50 values of 1.13, 0.83, 1.06 and 0.94, respectively, indicating additive interaction. Considering the in vitro activity of nitazoxanide and the obtained results, further in vivo studies may be considered to evaluate possible drug interactions in visceral leishmaniasis.


Natural Product Research | 2015

Bioactivity and chemical composition of the essential oil from the leaves of Guatteria australis A.St.-Hil

Carlos Alberto Theodoro Siqueira; Alessandra Freitas Serain; Aislan Cristina Rheder Fagundes Pascoal; Nathalia Luiza Andreazza; Caroline Caramano de Lourenço; João Ernesto de Carvalho; Ana Cláudia Oliveira de Souza; Juliana T. Mesquita; Andre G. Tempone; Marcos José Salvador

Essential oil from the leaves of Guatteria australis was obtained by hydrodistillation, analyzed by Gas Chromatography coupled to Mass Spectromery (GC–MS) and their antiproliferative, antileishmanial, antibacterial, antifungal and antioxidant activities were also evaluated. Twenty-three compounds were identified among which germacrene B (50.66%), germacrene D (22.22%) and (E)-caryophyllene (8.99%) were the main compounds. The highest antiproliferative activity was observed against NCI-ADR/RES (TGI = 31.08 μg/ml) and HT-29 (TGI = 32.81 μg/ml) cell lines. It also showed good antileishmanial activity against Leishmania infantum (IC50 = 30.71 μg/ml). On the other hand, the oil exhibited a small effect against Staphylococcus aureus ATCC 6538, S. aureus ATCC 14458 and Escherichia coli ATCC 10799 (MIC = 250 μg/ml), as well as small antioxidant activity (457 μmol TE/g) assessed through ORACFL assay. These results represent the first report regarding chemical composition and bioactivity of G. australis essential oil.


Phytomedicine | 2017

Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi

Simone S. Grecco; Thais A. Costa-Silva; Gerold Jerz; Fernanda S. de Sousa; Geanne A. Alves Conserva; Juliana T. Mesquita; Mariana K. Galuppo; Andre G. Tempone; Bruno J. Neves; Carolina H. Andrade; Rodrigo L.O.R. Cunha; Miriam Uemi; Patricia Sartorelli; João Henrique G. Lago

BACKGROUND From a previous screening of Brazilian biodiversity for antiprotozoal activity, the hexane extract from leaves of Nectandra leucantha (Nees & Mart.) (Lauraceae) demonstrated activity against Trypanosoma cruzi. Chromatographic separation of this extract afforded bioactive dehydrodieugenol (1). Furthermore, methylated derivative 2 (dehydrodieugenol dimethyl ether) was prepared and also tested against T. cruzi. PURPOSE To examine the therapeutical potential of compounds 1 and 2 against T. cruzi as well as to elucidate the mechanism of action of bioactive compound 1 against T. cruzi. METHODS/STUDY DESIGN Crude hexane extract from leaves was subjected to chromatographic steps to afford bioactive compound 1. In order to analyze the effect of additional methyl group in the antiparasitic activity of 1, derivative 2 was prepared (both are no pan-assay interference compounds - PAINS). These compounds were evaluated in vitro against T. cruzi (trypomastigote and amastigote forms) and analyzed for the potential effect in host cells through the production of nitric oxide and reactive oxygen species. Finally, the plasma membrane effect of the most potent compound 1 was investigated in T. cruzi trypomastigotes. RESULTS Compounds 1 and 2 displayed activity against amastigotes of T. cruzi. Although both compounds promoted activity against intracellular amastigotes, the production of nitric oxide and reactive oxygen species of host cells were unaltered, suggesting an antiparasitic activity other than host cell activation. Considering 1 the most effective compound against T. cruzi, the interference in the plasma membrane of the trypomastigotes was investigated using the fluorescent probe SYTOX® Green. After a short-term incubation, the fluidity and integrity of the plasma membrane was completely altered, suggesting it as a primary target for compound 1 in T. cruzi. CONCLUSION Compounds 1 and 2 selectively eliminated the intracellular parasites without host cell activation and could be important scaffolds for the search of new hit compounds.


Molecules | 2017

Investigation of the Anti-Leishmania (Leishmania) infantum Activity of Some Natural Sesquiterpene Lactones

Imke E. Wulsten; Thais A. Costa-Silva; Juliana T. Mesquita; Marta L. Lima; Mariana K. Galuppo; Noemi Nosomi Taniwaki; Samanta Etel Treiger Borborema; Fernando B. Da Costa; Thomas J. Schmidt; Andre G. Tempone

Leishmaniases are neglected infectious diseases caused by parasites of the ‘protozoan’ genus Leishmania. Depending on the parasite species, different clinical forms are known as cutaneous, muco-cutaneous, and the visceral leishmaniasis (VL). VL is particularly fatal and the therapy presents limitations. In the search for new anti-leishmanial hit compounds, seven natural sesquiterpene lactones were evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum, a pathogen causing VL. The pseudoguaianolides mexicanin I and helenalin acetate demonstrated the highest selectivity and potency against intracellular amastigotes. In addition, promastigotes treated with helenalin acetate were subject to an ultrastructural and biochemical investigation. The lethal action of the compound was investigated by fluorescence-activated cell sorting and related techniques to detect alterations in reactive oxygen species (ROS) content, plasma membrane permeability, and mitochondrial membrane potential. Helenalin acetate significantly reduced the mitochondrial membrane potential and the mitochondrial structural damage was also confirmed by transmission electron microscopy, displaying an intense organelle swelling. No alteration of plasma membrane permeability or ROS content could be detected. Additionally, helenalin acetate significantly increased the production of nitric oxide in peritoneal macrophages, probably potentiating the activity against the intracellular amastigotes. Helenalin acetate could hence be a useful anti-leishmanial scaffold for further optimization studies.


Journal of Natural Products | 2017

Rearranged Terpenoids from the Marine Sponge Darwinella cf. oxeata and Its Predator, the Nudibranch Felimida grahami

Maria Camila A. Ramirez; David E. Williams; Juliana R. Gubiani; Lizbeth L. L. Parra; Mario F. C. Santos; Daiane D. Ferreira; Juliana T. Mesquita; Andre G. Tempone; Antonio G. Ferreira; Vinicius Padula; Eduardo Hajdu; Raymond J. Andersen; Roberto G. S. Berlinck

Marine sponges are a rich source of terpenoids with rearranged spongian carbon skeletons. Investigation of extracts from the sponge Darwinella cf. oxeata yielded four new rearranged diterpenoids, oxeatine (2) and oxeatamides H-J (3-5), as well as the known metabolites oxeatamide A (6), oxeatamide A methyl ester (7), and membranolide (1). Oxeatine (2) has a new heterocyclic skeleton, while oxeatamide J (5) has an N-methyl urea group included in a γ-lactam moiety. UPLC-QTOF analysis of the extract obtained from the mantle of the nudibranch Felimida grahami indicated the presence of 1 and 4.

Collaboration


Dive into the Juliana T. Mesquita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika G. Pinto

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João Henrique G. Lago

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto G. S. Berlinck

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Eduardo Hajdu

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge