Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juliane Weiner is active.

Publication


Featured researches published by Juliane Weiner.


The Journal of Nuclear Medicine | 2017

Dissociation between brown adipose tissue 18F-FDG uptake and thermogenesis in uncoupling protein 1 deficient mice

Mohammed K. Hankir; Mathias Kranz; Susanne Keipert; Juliane Weiner; Sille G Andreasen; Matthias Kern; Marianne Patt; Nora Klöting; John T. Heiker; Swen Hesse; Peter Brust; Martin Jastroch; Wiebke Fenske

18F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy-3H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy-3H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18F-FDG uptake independently of UCP1 thermogenic function.


Scientific Reports | 2016

Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice

Juliane Weiner; Mathias Kranz; Nora Kloeting; Anne Kunath; Karen Steinhoff; Eddy Rijntjes; Josef Koehrle; Vilia Zeisig; Mohammed K. Hankir

The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo14C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.


Embo Molecular Medicine | 2016

A novel thermoregulatory role for PDE10A in mouse and human adipocytes

Mohammed K. Hankir; Mathias Kranz; Thorsten Gnad; Juliane Weiner; Sally Wagner; Winnie Deuther-Conrad; Felix Bronisch; Karen Steinhoff; Julia Luthardt; Nora Klöting; Swen Hesse; John Seibyl; Osama Sabri; John T. Heiker; Matthias Blüher; Alexander Pfeifer; Peter Brust; Wiebke Fenske

Phosphodiesterase type 10A (PDE10A) is highly enriched in striatum and is under evaluation as a drug target for several psychiatric/neurodegenerative diseases. Preclinical studies implicate PDE10A in the regulation of energy homeostasis, but the mechanisms remain unclear. By utilizing small‐animal PET/MRI and the novel radioligand [18F]‐AQ28A, we found marked levels of PDE10A in interscapular brown adipose tissue (BAT) of mice. Pharmacological inactivation of PDE10A with the highly selective inhibitor MP‐10 recruited BAT and potentiated thermogenesis in vivo. In diet‐induced obese mice, chronic administration of MP‐10 caused weight loss associated with increased energy expenditure, browning of white adipose tissue, and improved insulin sensitivity. Analysis of human PET data further revealed marked levels of PDE10A in the supraclavicular region where brown/beige adipocytes are clustered in adults. Finally, the inhibition of PDE10A with MP‐10 stimulated thermogenic gene expression in human brown adipocytes and induced browning of human white adipocytes. Collectively, our findings highlight a novel thermoregulatory role for PDE10A in mouse and human adipocytes and promote PDE10A inhibitors as promising candidates for the treatment of obesity and diabetes.


Molecular metabolism | 2017

Brown adipose tissue (BAT) specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation

Juliane Weiner; Kerstin Rohde; Kerstin Krause; Konstanze Zieger; Nora Klöting; Peter Kovacs; Michael Stumvoll; Matthias Blüher; Yvonne Böttcher; John T. Heiker

Objective Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin) and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT) biology. Methods We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT) and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Results Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF) or high-sugar (HS) fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT) depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Conclusions Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function.


Molecular and Cellular Endocrinology | 2017

Thyroid hormones and browning of adipose tissue

Juliane Weiner; Mohammed K. Hankir; John T. Heiker; Wiebke Fenske; Kerstin Krause

Thyroid hormone (TH) disorders are associated with profound changes in whole body energy metabolism. A major TH target is thermogenic brown adipose tissue (BAT), which can be stimulated directly through thyroid hormone receptors (TRs) expressed in brown adipocytes and indirectly, through TRs expressed in hypothalamic neurons. White adipose tissue (WAT) adopts BAT characteristics by a diverse range of stimuli in a process referred to as browning. It is now understood that TH also induce WAT browning through peripheral and central mechanisms. In this review, we discuss evidence from animal and human studies that TH disorders are associated with changes in both BAT thermogenesis and WAT browning, thereby influencing body temperature and body weight regulation.


European thyroid journal | 2015

The Effects of Thyroid Hormones on Gene Expression of Acyl-Coenzyme A Thioesterases in Adipose Tissue and Liver of Mice

Kerstin Krause; Juliane Weiner; Sebastian Hönes; Nora Klöting; Eddy Rijntjes; John T. Heiker; Claudia Gebhardt; Josef Köhrle; Dagmar Führer; Karen Steinhoff; Swen Hesse; Lars C. Moeller; Anke Tönjes

Background: Thyroid hormones (TH) exert pleiotropic effects on glucose and lipid homeostasis. However, it is as yet unclear how TH regulate lipid storage and utilization in order to adapt to metabolic needs. Acyl-CoA thioesterases (ACOTs) have been proposed to play a regulatory role in the metabolism of fatty acids. Objectives: We investigated the interaction between thyroid dysfunction and Acot expression in adipose tissues and livers of thyrotoxic and hypothyroid mice. Methods: Ten-week-old female C57BL/6NTac mice (n = 10/group) were made hyperthyroid by the application of L-thyroxine (2 µg/ml in drinking water) for 4 weeks. Hypothyroidism was induced in 10-week-old mice by feeding an iodine-free chow supplemented with 0.15% PTU for 4 weeks. We measured mRNA expression levels of Acot8, 11 and 13 in the liver and epididymal and inguinal white and brown adipose tissues (BAT). Furthermore, we investigated hepatic Acot gene expression in TRα- and TRβ-deficient mice. Results: We showed that the expression of Acot8, 11 and 13 is predominantly stimulated by a thyrotoxic state in the epididymal white adipose tissue. In contrast, hypothyroidism predominantly induces the expression of Acot8 in BAT in comparison with BAT of thyrotoxic and euthyroid mice (p < 0.01). However, no significant changes in Acot expression were observed in inguinal white adipose tissue. In liver, Acot gene expression is collectively elicited by a thyrotoxic state. Conclusions: These data suggest that ACOTs are targets of TH and are likely to influence 3,5,3′-triiodo-L-thyronine-orchestrated mechanisms of lipid uptake, storage and utilization to adapt the regulation of metabolic demands.


Biochimica et Biophysica Acta | 2017

Depletion of Jmjd1c impairs adipogenesis in murine 3T3-L1 cells

Florian Buerger; Silvana Müller; Nadja Ney; Juliane Weiner; John T. Heiker; Sonja Kallendrusch; Peter Kovacs; Dorit Schleinitz; Joachim Thiery; Sonja C. Stadler; Ralph Burkhardt

Differentiation of adipocytes is a highly regulated process modulated by multiple transcriptional co-activators and co-repressors. JMJD1C belongs to the family of jumonji C (jmjC) domain-containing histone demethylases and was originally described as a ligand-dependent co-activator of thyroid hormone and androgen receptors. Here, we explored the potential role of Jmjd1c in white adipocyte differentiation. To investigate the relevance of Jmjd1c in adipogenesis, murine 3T3-L1 preadipocyte cells with transient knock-down of Jmjd1c (3T3_Jmjd1c) were generated. Depletion of Jmjd1c led to the formation of smaller lipid droplets, reduced accumulation of triglycerides and maintenance of a more fibroblast-like morphology after adipocyte differentiation. Concomitantly, insulin stimulated uptake of glucose and fatty acids was significantly reduced in 3T3_Jmjd1c adipocytes. In line with these observations we detected lower expression of key genes associated with lipid droplet formation (Plin1, Plin4, Cidea) and uptake of glucose and fatty acids (Glut4, Fatp1, Fatp4, Aqp7) respectively. Finally, we demonstrate that depletion of Jmjd1c interferes with mitotic clonal expansion (MCE), increases levels of H3K9me2 (dimethylation of lysine 9 of histone H3) at promotor regions of adipogenic transcription factors (C/EBPs and PPARγ) and leads to reduced induction of these key regulators. In conclusion, we have identified Jmjd1c as a modulator of adipogenesis. Our data suggest that Jmjd1c may participate in MCE and the activation of the adipogenic transcription program during the induction phase of adipocyte differentiation in 3T3-L1 cells.


Archive | 2018

Molecular Mechanisms of Vaspin Action – From Adipose Tissue to Skin and Bone, from Blood Vessels to the Brain

Juliane Weiner; Konstanze Zieger; Jan Pippel; John T. Heiker

Visceral adipose tissue-derived serine protease inhibitor (vaspin) or SERPINA12 according to the serpin nomenclature was identified together with other genes and gene products that were specifically expressed or overexpressed in the intra-abdominal or visceral adipose tissue (AT) of the Otsuka Long-Evans Tokushima fatty rat. These rats spontaneously develop visceral obesity, insulin resistance, hyperinsulinemia and -glycemia, as well as hypertension and thus represent a well suited animal model of obesity and related metabolic disorders such as type 2 diabetes.The follow-up study reporting the cloning, expression and functional characterization of vaspin suggested the great and promising potential of this molecule to counteract obesity induced insulin resistance and inflammation and has since initiated over 300 publications, clinical and experimental, that have contributed to uncover the multifaceted functions and molecular mechanisms of vaspin action not only in the adipose, but in many different cells, tissues and organs. This review will give an update on mechanistic and structural aspects of vaspin with a focus on its serpin function, the physiology and regulation of vaspin expression, and will summarize the latest on vaspin function in various tissues such as the different adipose tissue depots as well as the vasculature, skin, bone and the brain.


Molecular and Cellular Endocrinology | 2018

Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NFκB pathway

Konstanze Zieger; Juliane Weiner; Kerstin Krause; Maximilian Schwarz; Martin Kohn; Michael Stumvoll; Matthias Blüher; John T. Heiker


Cellular and Molecular Life Sciences | 2018

Ablation of kallikrein 7 (KLK7) in adipose tissue ameliorates metabolic consequences of high fat diet-induced obesity by counteracting adipose tissue inflammation in vivo

Konstanze Zieger; Juliane Weiner; Anne Kunath; Martin Gericke; Kerstin Krause; Matthias Kern; Michael Stumvoll; Nora Klöting; Matthias Blüher; John T. Heiker

Collaboration


Dive into the Juliane Weiner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Kranz

Helmholtz-Zentrum Dresden-Rossendorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge