Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Krause is active.

Publication


Featured researches published by Kerstin Krause.


Endocrine-related Cancer | 2008

FOXO3a: a novel player in thyroid carcinogenesis?

Stefan Karger; Carl Weidinger; Kerstin Krause; Sien-Yi Sheu; Thomas Aigner; Oliver Gimm; Kurt-Werner Schmid; Henning Dralle; Dagmar Führer

The forkhead box transcription factor FOXO3a has recently been identified as central mediator of the cellular response to oxidative stress inducing cell cycle arrest or apoptosis. The aim of our study was to investigate the regulation of FOXO3a in the thyroid and to determine whether alterations in FOXO3a activity occur in thyroid carcinogenesis. In vitro, we demonstrate that FOXO3a activity is negatively regulated by the PI3K/Akt cascade promoting increased phosphorylation and cytoplasmatic accumulation of FOXO3a with decreased transcription of the target genes p27kip (CDKN1B) and Bim (BCL2L11), but increased expression of GADD45A. By contrast, we show that H(2)O(2) exposure activates FOXO3a in thyrocytes with JNK (MAPK8)-mediated nuclear accumulation of FOXO3a and increased expression of the cell cycle arrest genes p27kip and GADD45A. In vivo, we observed a marked cytoplasmatic accumulation of FOXO3a in differentiated thyroid cancers versus an exclusive nuclear accumulation in follicular adenoma and normal thyroid tissue. Moreover, this cytosolic accumulation of FOXO3a correlated with an increased phospho-Akt expression in thyroid malignancies and was accompanied by decreased expression of the FOXO targets p27kip and Bim and an increase in GADD45A mRNA expression in the thyroid cancers. Our data suggest FOXO3a as a novel player of cellular stress response in the thyroid, mediating the thyrocytes fate either to survive or to undergo apoptosis. Furthermore, PI3K-dependent FOXO3a inactivation may be a novel pathomechanism for the escape from apoptosis in thyroid cancer cells, in particular in follicular thyroid carcinoma.


Endocrine-related Cancer | 2008

Forkhead box-O transcription factor: critical conductors of cancer's fate

Carl Weidinger; Kerstin Krause; Antje Klagge; Stefan Karger; Dagmar Führer

Cells have evolved elaborated mechanisms to coordinate the cellular answer of either survival or apoptosis. Recent concepts of human carcinogenesis have suggested disturbances in these cellular relays as a potential link to cellular dedifferentiation and uncontrolled proliferation. Forkhead box-O transcription factors (FOXOs) play an important role in tumour suppression by regulating the expression of genes involved in stress resistance, DNA damage repair, cell cycle arrest and apoptosis. The specific regulation of FOXO function is tightly controlled by posttranslational modifications such as phosphorylation, acetylation and ubiquitination. Loss of FOXO function has recently been identified in several human cancers. In this review, we will give an overview about recent progress in the understanding of function and regulation of FOXOs, as well as their role in carcinogenesis. Furthermore, we will discuss a potential clinical use of FOXOs by therapeutically restoring their tumour suppressive properties.


Hormone and Metabolic Research | 2010

Somatostatin receptor subtype expression in human thyroid tumours.

A. Klagge; Kerstin Krause; Katrin Schierle; F. Steinert; Henning Dralle; Dagmar Führer

Somatostatin receptors (SSTR) are expressed in various endocrine tumours. The expression of SSTR at the tumour cell surface confers the possibility for diagnostic imaging and therapy of tumours using radiolabeled somatostatin analogues. The majority of currently available somatostatin analogues show a higher binding affinity for the SSTR2 subtype. To date, the precise expression pattern of the SSTR subtypes 1-5 in thyroid epithelial tumours remains to be determined. We investigated the mRNA expression of SSTR1-5 in benign and malignant epithelial thyroid tumours [20 cold thyroid nodules (CTNs), 20 toxic thyroid nodules (TTNs), 20 papillary, 20 follicular, and 5 anaplastic carcinomas (PTCs, FTCs, ATCs, respectively)] and compared them to normal surrounding thyroid tissues. Four out of five SSTR subtypes were detected in malignant thyroid tumours, benign neoplasia, and normal surrounding tissue with a predominant expression of SSTR2 and SSTR5, and a weak expression of SSTR1 and SSTR3. Weak SSTR4 mRNA expression was detected in some PTCs. Compared to normal thyroid tissue, SSTR2 was significantly upregulated in PTC and ATC. In addition significant upregulation of SSTR3 was found in PTC. SSTR5 mRNA expression was increased in PTC and FTC and significantly decreased in CTN and TTN compared to normal thyroid tissue. SSTR2 is the predominant subtype in thyroid epithelial tumours with a high expression pattern, in particular, in PTC . Perspectively, the expression of distinct SSTR in thyroid epithelial tumours might represent a promising avenue for diagnostics and therapy of advanced thyroid cancer with somatostatin analogues.


The Journal of Clinical Endocrinology and Metabolism | 2008

TFF3-Based Candidate Gene Discrimination of Benign and Malignant Thyroid Tumors in a Region with Borderline Iodine Deficiency

Kerstin Krause; Markus Eszlinger; Oliver Gimm; Stefan Karger; Cornelia Engelhardt; Henning Dralle; Dagmar Führer

BACKGROUND With the advent of microarray technology, increasing numbers of marker genes are proposed to distinguish benign and malignant thyroid lesions. However, most markers await confirmation through independent studies. In this paper, we re-evaluate the diagnostic potential of 10 proposed candidate genes in benign and malignant thyroid pathologies in a region with borderline iodine deficiency. METHODS Quantitative real-time PCR was performed for CCND2, PLAB, PCSK2, HGD1, TFF3, B4GALT, LGALS3, ETS1, ADM3, and TG in 150 thyroid specimens, including 52 benign thyroid nodules (28 follicular adenoma and 24 adenomatous nodules), 52 corresponding normal thyroid tissues, 20 follicular carcinomas, 20 papillary carcinomas, and six undifferentiated carcinomas. RESULTS On a single-gene basis, significant differences in mRNA expression were found for TFF3, PLAB, and ADM3 in benign thyroid nodules and thyroid malignancy. Using two-marker gene sets, we identified 11 combinations, which allowed both a distinction of benign and malignant thyroid nodules and a discrimination of follicular adenoma and carcinoma. However, for cancer prediction, analysis of a minimum of six genes per sample was necessary and allowed correct prediction of a benign thyroid lesion and thyroid cancer with 94% accuracy in the most discriminative set (TFF3/PLAB/TG/ADM3/HGD1/LGALS3). CONCLUSION We confirm the applicability of a number of recently proposed marker genes for the distinction of benign and malignant thyroid tumor and suggest that their diagnostic usefulness is independent of the iodide supply. We propose that the most discriminative marker set identified in our validation study together with marker combinations proposed by other investigators should now be evaluated in multicenter trials.


Journal of Endocrinology | 2013

Fibroblast growth factor-21 serum concentrations are associated with metabolic and hepatic markers in humans

Anke Tönjes; Kerstin Krause; Judit Richter; Ulrike Lossner; Peter Kovacs; Thomas J. Ebert; Matthias Blüher; Michael Stumvoll; Mathias Fasshauer

Rather than a traditional growth factor, fibroblast growth factor-21 (FGF21) is considered to be a metabolic hormone. In the current study, we investigated serum FGF21 levels in the self-contained population of Sorbs. Serum FGF21 concentrations were quantified by ELISA and correlated with IGF1 as well as metabolic, renal, hepatic, inflammatory, and cardiovascular parameters in 913 Sorbs from Germany. Moreover, human IGF1 protein secretion was investigated in FGF21-stimulated HepG2 cells. Median FGF21 serum concentrations were 2.1-fold higher in subjects with type 2 diabetes mellitus (141.8 ng/l) compared with controls (66.7 ng/l). Furthermore, nondiabetic subjects with FGF21 levels below the detection limit of the ELISA showed a more beneficial metabolic profile compared with subjects with measurable FGF21. Moreover, FGF21 was significantly lower in female compared with male subjects after adjustment for age and BMI. In multiple regression analyses, circulating FGF21 concentrations remained independently and positively associated with gender, systolic blood pressure, triglycerides, and γ glutamyl transferase whereas a negative association was observed with IGF1 in nondiabetic subjects. Notably, FGF21 significantly inhibited IGF1 secretion into HepG2 cell culture supernatants in preliminary in vitro experiments. FGF21 serum concentrations are associated with facets of the metabolic syndrome, hepatocellular function, as well as GH status.


Journal of Cellular Biochemistry | 2009

Amyloid Precursor Protein Expression Is induced by Tumor Necrosis Factor α in 3T3-L1 Adipocytes

Grit Sommer; Jana Lipfert; Sebastian Weise; Kerstin Krause; Beate Jessnitzer; Ulrike Lossner; Matthias Blüher; Michael Stumvoll; Mathias Fasshauer

Amyloid precursor protein (APP) has been characterized as an adipocyte‐secreted protein that might contribute to obesity‐related insulin resistance, inflammation, and dementia. In the current study, regulation of APP by the proinflammatory and insulin resistance‐inducing cytokine tumor necrosis factor (TNF) α was determined in 3T3‐L1 adipocytes. Interestingly, APP protein synthesis and mRNA expression were significantly increased by TNFα in a time‐dependent manner with maximal induction observed after 24 h of treatment. Furthermore, TNFα induced APP mRNA expression dose‐dependently with maximal 6.4‐fold upregulation seen at 100 ng/ml effector. Moreover, inhibitor experiments suggested that TNFα‐induced APP expression was mediated by nuclear factor κ B. Taken together, we show for the first time a potent upregulation of APP by TNFα suggesting a potential role of this adipocyte‐secreted protein in TNFα‐induced insulin resistance and inflammatory disease. J. Cell. Biochem. 108: 1418–1422, 2009.


Obesity | 2015

Circulating adipocyte fatty acid-binding protein induces insulin resistance in mice in vivo

Nora Klöting; Thomas Ebert; Matthias Kern; Annett Hoffmann; Kerstin Krause; Beate Jessnitzer; Ulrike Lossner; Ines Sommerer; Michael Stumvoll; Mathias Fasshauer

Circulating levels of the adipokine adipocyte fatty acid‐binding protein (AFABP) are increased in obesity. However, the influence of circulating AFABP on insulin sensitivity in vivo remains unclear.


The Journal of Clinical Endocrinology and Metabolism | 2011

FOXO3 Is Inhibited by Oncogenic PI3K/Akt Signaling but Can Be Reactivated by the NSAID Sulindac Sulfide

Carl Weidinger; Kerstin Krause; Kathrin Mueller; Antje Klagge; Dagmar Führer

BACKGROUND Overactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has emerged as a pivotal trigger of thyroid carcinogenesis. Recent findings from other tumor entities revealed that PI3K/Akt-driven carcinogenesis critically involves the inactivation of the tumor-suppressive transcription factor Forkhead box O (FOXO)-3. However, little is known about FOXO3 in the thyroid context. AIMS We sought to investigate the influence of the thyroid oncogenes BRAFV600E, H-RASV12, and p110α (H1074R) on the regulation of the PI3K downstream target FOXO3 in vitro. Furthermore, the impact of the expression of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) on the transcriptional activity of FOXO3 was assessed in a panel of 44 human thyroid tumors. Finally, we tried to modulate FOXO3 activity pharmacologically with help of the nonsteroidal antiinflammatory drug sulindac sulfide (SS). RESULTS We found that the overexpression of p110α H1074R results in the inactivation of FOXO3 via its nuclear exclusion. In vivo, we observed a direct correlation between PTEN expression and the transcriptional activation of FOXO3. In vitro, we found that stimulation with SS reversed PI3K/Akt-driven inactivation of FOXO3, resulting in its nuclear relocation and a combined induction of the antiproliferative FOXO target genes Gadd45α and p27(kip1) and the proapoptotic FOXO target gene Bim in benign (FRTL-5) and malignant human thyrocytes (FTC-133). In agreement with this, SS promoted the cell cycle arrest and apoptosis in thyroid cells, which could be amplified by the transfection of exogenous FOXO3. CONCLUSION Our data suggest that deregulation of proapoptotic FOXO3 represents a central step in PI3K/Akt-mediated thyroid carcinogenesis. Thus, SS might represent an attractive pharmacological tool for targeting thyroid neoplasia with aberrant PI3K/Akt/FOXO3 signaling.


American Journal of Pathology | 2011

Dissecting Molecular Events in Thyroid Neoplasia Provides Evidence for Distinct Evolution of Follicular Thyroid Adenoma and Carcinoma

Kerstin Krause; Susanne Prawitt; Markus Eszlinger; Christian Ihling; Andrea Sinz; Katrin Schierle; Oliver Gimm; Henning Dralle; Frank Steinert; Sien-Yi Sheu; Kurt Werner Schmid; Dagmar Führer

Benign hypofunctional cold thyroid nodules (CTNs) are a frequent scintiscan finding and need to be distinguished from thyroid carcinomas. The origin of CTNs with follicular morphologic features is unresolved. The DNA damage response might act as a physiologic barrier, inhibiting the progression of preneoplastic lesions to neoplasia. We investigated the following in hypofunctional follicular adenoma (FA) and follicular thyroid cancer (FTC): i) the mutation rate of frequently activated oncogenes, ii) the activation of DNA damage response checkpoints, and iii) the differential proteomic pattern between FA and FTC. Both FTC and FA, which did not harbor RAS, phosphoinositide-3-kinase, or PAX/peroxisome proliferator activated receptor-γ mutations, express various proteins in common and others that are more distinctly expressed in FTC rather than in FA or normal thyroid tissue. This finding is in line with the finding of constitutive DNA damage checkpoint activation (p-Chk2, γ-H2AX) and evidence for replicative stress causing genomic instability (increased cyclin E, retinoblastoma, or E2F1 mRNA expression) in FTC but not FA. We discuss the findings of the increased expression of translationally controlled tumor protein, phosphatase 2A inhibitor, and DJ-1 in FTC compared with FA identified by proteomics and their potential implication in follicular thyroid carcinogenesis. Our present findings argue for the definition of FA as a truly benign entity and against progressive development of FA to FTC.


Journal of Molecular Endocrinology | 2012

Distinct pattern of oxidative DNA damage and DNA repair in follicular thyroid tumours

Stefan Karger; Kerstin Krause; Cornelia Engelhardt; Carl Weidinger; Oliver Gimm; Henning Dralle; Sien-Yi Sheu-Grabellus; Kurt Werner Schmid; Dagmar Führer

Increased oxidative stress has been linked to thyroid carcinogenesis. In this paper, we investigate whether oxidative DNA damage and DNA repair differ in follicular adenoma (FA) and follicular thyroid carcinoma (FTC). 7,8-Dihydro-8-oxoguanine (8-OxoG) formation was analysed by immunohistochemistry in 46 FAs, 52 FTCs and 18 normal thyroid tissues (NTs). mRNA expression of DNA repair genes OGG1, Mut Y homologue (MUTYH) and endonuclease III (NTHL1) was analysed by real-time PCR in 19 FAs, 25 FTCs and 19 NTs. Induction and repair of oxidative DNA damage were studied in rat FRTL-5 cells after u.v. irradiation. Moreover, activation of DNA damage checkpoints (ataxia telangiectasia mutated (ATM) and H2A histone family, member X (H2AFX (H2AFX))) and proliferation index (MIB-1) were quantified in 28 non-oxyphilic and 24 oxyphilic FTCs. Increased nuclear and cytosolic 8-OxoG formation was detected in FTC compared with follicular adenoma, whereby cytosolic 8-OxoG formation was found to reflect RNA oxidation. Significant downregulation of DNA repair enzymes was detected in FTC compared with FA. In vitro experiments mirrored the findings in FTC with oxidative stress-induced DNA checkpoint activation and downregulation of OGG1, MUTYH and NTHL1 in FRTL-5 cells, an effect that, however, was reversible after 24  h. Further analysis of FTC variants showed decreased oxidative DNA damage, sustained checkpoint activation and decreased proliferation in oxyphilic vs non-oxyphilic FTC. Our data suggest a pathophysiological scenario of accumulating unrepaired DNA/RNA damage in FTC vs counterbalanced DNA/RNA damage and repair in FA. Furthermore, this study provides the first evidence for differences in oxidative stress defence in FTC variants with possible implications for therapeutic response and prognostic outcome.

Collaboration


Dive into the Kerstin Krause's collaboration.

Top Co-Authors

Avatar

Dagmar Führer

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge