Julie A. Farley
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie A. Farley.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012
Lora C. Bailey-Downs; Matthew Mitschelen; Danuta Sosnowska; Peter Toth; John T. Pinto; Praveen Ballabh; M. Noa Valcarcel-Ares; Julie A. Farley; Akos Koller; Jim C. Henthorn; Caroline E. Bass; William E. Sonntag; Zoltan Ungvari; Anna Csiszar
Recent studies demonstrate that age-related dysfunction of NF-E2-related factor-2 (Nrf2)-driven pathways impairs cellular redox homeostasis, exacerbating age-related cellular oxidative stress and increasing sensitivity of aged vessels to oxidative stress-induced cellular damage. Circulating levels of insulin-like growth factor (IGF)-1 decline during aging, which significantly increases the risk for cardiovascular diseases in humans. To test the hypothesis that adult-onset IGF-1 deficiency impairs Nrf2-driven pathways in the vasculature, we utilized a novel mouse model with a liver-specific adeno-associated viral knockdown of the Igf1 gene using Cre-lox technology (Igf1(f/f) + MUP-iCre-AAV8), which exhibits a significant decrease in circulating IGF-1 levels (~50%). In the aortas of IGF-1-deficient mice, there was a trend for decreased expression of Nrf2 and the Nrf2 target genes GCLC, NQO1 and HMOX1. In cultured aorta segments of IGF-1-deficient mice treated with oxidative stressors (high glucose, oxidized low-density lipoprotein, and H(2)O(2)), induction of Nrf2-driven genes was significantly attenuated as compared with control vessels, which was associated with an exacerbation of endothelial dysfunction, increased oxidative stress, and apoptosis, mimicking the aging phenotype. In conclusion, endocrine IGF-1 deficiency is associated with dysregulation of Nrf2-dependent antioxidant responses in the vasculature, which likely promotes an adverse vascular phenotype under pathophysiological conditions associated with oxidative stress (eg, diabetes mellitus, hypertension) and results in accelerated vascular impairments in aging.
Journal of Neurochemistry | 2010
Heather D. VanGuilder; Han Yan; Julie A. Farley; William E. Sonntag; Willard M. Freeman
J. Neurochem. (2010) 113, 1577–1588.
Neurobiology of Disease | 2011
Heather D. VanGuilder; Julie A. Farley; Han Yan; Colleen A. Van Kirk; Matthew Mitschelen; William E. Sonntag; Willard M. Freeman
Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype.
Journal of Neuroinflammation | 2011
Heather D. VanGuilder; Georgina V. Bixler; Robert M. Brucklacher; Julie A. Farley; Han Yan; Junie P. Warrington; William E. Sonntag; Willard M. Freeman
BackgroundAge-related cognitive dysfunction, including impairment of hippocampus-dependent spatial learning and memory, affects approximately half of the aged population. Induction of a variety of neuroinflammatory measures has been reported with brain aging but the relationship between neuroinflammation and cognitive decline with non-neurodegenerative, normative aging remains largely unexplored. This study sought to comprehensively investigate expression of the MHC II immune response pathway and glial activation in the hippocampus in the context of both aging and age-related cognitive decline.MethodsThree independent cohorts of adult (12-13 months) and aged (26-28 months) F344xBN rats were behaviorally characterized by Morris water maze testing. Expression of MHC II pathway-associated genes identified by transcriptomic analysis as upregulated with advanced aging was quantified by qPCR in synaptosomal fractions derived from whole hippocampus and in hippocampal subregion dissections (CA1, CA3, and DG). Activation of astrocytes and microglia was assessed by GFAP and Iba1 protein expression, and by immunohistochemical visualization of GFAP and both CD74 (Ox6) and Iba1.ResultsWe report a marked age-related induction of neuroinflammatory signaling transcripts (i.e., MHC II components, toll-like receptors, complement, and downstream signaling factors) throughout the hippocampus in all aged rats regardless of cognitive status. Astrocyte and microglial activation was evident in CA1, CA3 and DG of intact and impaired aged rat groups, in the absence of differences in total numbers of GFAP+ astrocytes or Iba1+ microglia. Both mild and moderate microglial activation was significantly increased in all three hippocampal subregions in aged cognitively intact and cognitively impaired rats compared to adults. Neither induction of MHCII pathway gene expression nor glial activation correlated to cognitive performance.ConclusionsThese data demonstrate a novel, coordinated age-related induction of the MHC II immune response pathway and glial activation in the hippocampus, indicating an allostatic shift toward a para-inflammatory phenotype with advancing age. Our findings demonstrate that age-related induction of these aspects of hippocampal neuroinflammation, while a potential contributing factor, is not sufficient by itself to elicit impairment of spatial learning and memory in models of normative aging. Future efforts are needed to understand how neuroinflammation may act synergistically with cognitive-decline specific alterations to cause cognitive impairment.
Neuroscience | 2011
Matthew Mitschelen; Han Yan; Julie A. Farley; Junie P. Warrington; Song Han; Claudia Beatriz Hereñú; Anna Csiszar; Zoltan Ungvari; Lora C. Bailey-Downs; Caroline E. Bass; William E. Sonntag
Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2012
Lora C. Bailey-Downs; Danuta Sosnowska; Peter Toth; Matthew Mitschelen; Tripti Gautam; Jim C. Henthorn; Praveen Ballabh; Akos Koller; Julie A. Farley; William E. Sonntag; Anna Csiszar; Zoltan Ungvari
Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.
Journal of Endocrinology | 2011
Han Yan; Matthew Mitschelen; Georgina V. Bixler; Robert M. Brucklacher; Julie A. Farley; Song Han; Willard M. Freeman; William E. Sonntag
GH and its anabolic mediator, IGF1, are important not only in somatic growth but also in the regulation of brain function. Even though GH treatment has been used clinically to improve body composition and exercise capacity in adults, its influence on central nervous system function has only recently been recognized. This is also the case for children with childhood-onset GH deficiency (GHD) where GH has been used to stimulate bone growth and enhance final adult height. Circulating IGF1 is transported across the blood-brain barrier and IGF1 and its receptors are also synthesized in the brain by neurons and glial and endothelial cells. Nevertheless, the relationship between circulating IGF1 and brain IGF1 remains unclear. This study, using a GH-deficient dwarf rat model and peripheral GH replacement, investigated the effects of circulating IGF1 during adolescence on IGF1 levels in the brain. Our results demonstrated that hippocampal IGF1 protein concentrations during adolescence are highly regulated by circulating IGF1, which were reduced by GHD and restored by systematic GH replacement. Importantly, IGF1 levels in the cerebrospinal fluid were decreased by GHD but not restored by GH replacement. Furthermore, analysis of gene expression using microarrays and RT-PCR indicated that circulating IGF1 levels did not modify the transcription of Igf1 or its receptor in the hippocampus but did regulate genes that are involved in microvascular structure and function, brain development, and synaptic plasticity, which potentially support brain structures involved in cognitive function during this important developmental period.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2010
Zoltan Ungvari; Tripti Gautam; Peter Koncz; Jim C. Henthorn; John T. Pinto; Praveen Ballabh; Han Yan; Matthew Mitschelen; Julie A. Farley; William E. Sonntag; Anna Csiszar
In humans, growth hormone deficiency (GHD) and low circulating levels of insulin-like growth factor 1 (IGF-1) significantly increase the risk for cerebrovascular disease. Genetic growth hormone (GH)/IGF-1 deficiency in Lewis dwarf rats significantly increases the incidence of late-life strokes, similar to the effects of GHD in elderly humans. Peripubertal treatment of Lewis dwarf rats with GH delays the occurrence of late-life stroke, which results in a significant extension of life span. The present study was designed to characterize the vascular effects of life span-extending peripubertal GH replacement in Lewis dwarf rats. Here, we report, based on measurements of dihydroethidium fluorescence, tissue isoprostane, GSH, and ascorbate content, that peripubertal GH/IGF-1 deficiency in Lewis dwarf rats increases vascular oxidative stress, which is prevented by GH replacement. Peripubertal GHD did not alter superoxide dismutase or catalase activities in the aorta nor the expression of Cu-Zn-SOD, Mn-SOD, and catalase in the cerebral arteries of dwarf rats. In contrast, cerebrovascular expression of glutathione peroxidase 1 was significantly decreased in dwarf vessels, and this effect was reversed by GH treatment. Peripubertal GHD significantly decreases expression of the Nrf2 target genes NQO1 and GCLC in the cerebral arteries, whereas it does not affect expression and activity of endothelial nitric oxide synthase and vascular expression of IGF-1, IGF-binding proteins, and inflammatory markers (tumor necrosis factor alpha, interluekin-6, interluekin-1β, inducible nitric oxide synthase, intercellular adhesion molecule 1, and monocyte chemotactic protein-1). In conclusion, peripubertal GH/IGF-1 deficiency confers pro-oxidative cellular effects, which likely promote an adverse functional and structural phenotype in the vasculature, and results in accelerated vascular impairments later in life.
Neuroscience | 2009
Matthew Mitschelen; P. Garteiser; B.A. Carnes; Julie A. Farley; S. Doblas; J.H. DeMoe; Junie P. Warrington; Han Yan; M.M. Nicolle; R. Towner; William E. Sonntag
With increasing age, a subset of otherwise healthy individuals undergoes impairments in learning and memory that have been termed mild cognitive impairment (MCI). The enhanced neuronal activity associated with learning and memory requires increased cerebral blood flow (CBF) to specific brain regions. However, the interactions between cerebral blood flow and MCI remain unclear. In this study, we address whether baseline or hypercapnia-induced (increased blood CO(2) levels) changes in CBF are modified with age, and whether these measures are predictive of cognitive status in rodents. Adult and aged rats were evaluated using a hippocampally-dependent task in a water maze. Aged rats were classified as memory-impaired or memory-intact based on performance comparisons with adult rats. Cerebral blood flow was assessed using flow-alternating inversion recovery (FAIR) magnetic resonance imaging (MRI), before and after breathing 10% CO(2). The transition period between CO(2) concentrations was examined with blood oxygen level dependent (BOLD) MRI. Separation of aged animals into memory-intact and impaired categories revealed increased basal perfusion in the dorsal hippocampus of memory-impaired versus memory-intact aged animals. Linear regression revealed that higher hippocampal perfusion was correlated with impaired memory in aged animals, and a logistic regression indicated that hippocampal perfusion predicted spatial memory ability. Several brain regions of aged rats demonstrated an attenuation of the perfusion increase normally observed in adult rats under hypercapnia. Memory-impaired animals were the primary contributor to this effect, as their perfusion response to hypercapnia was significantly reduced compared to adult animals. Aged, memory-intact animals were not significantly different from adults. BOLD MRI demonstrated a reduced response in aged animals to hypercapnia, with impaired animals being the primary contributor to the effect. A logistic regression model based on basal and hypercapnia perfusion correctly predicted cognitive status in 83.3% of animals tested. Our results indicate that age-related changes in vascular reactivity and perfusion are important contributing factors in memory impairment.
GeroScience | 2017
Nicole M. Ashpole; Sreemathi Logan; Andriy Yabluchanskiy; Matthew Mitschelen; Han Yan; Julie A. Farley; Erik L. Hodges; Zoltan Ungvari; Anna Csiszar; Sixia Chen; Constantin Georgescu; Gene B. Hubbard; Yuji Ikeno; William E. Sonntag
Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igff/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.