Sreemathi Logan
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sreemathi Logan.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Sreemathi Logan; Martin Paul Agbaga; Michael D. Chan; Nabila Kabir; Nawajes A. Mandal; Richard S. Brush; Robert E. Anderson
Autosomal-dominant Stargardt-like macular dystrophy [Stargardt3 (STGD3)] results from single allelic mutations in the elongation of very-long–chain fatty acids-like 4 (ELOVL4), whereas recessive mutations lead to skin and brain dysfunction. ELOVL4 protein localizes to the endoplasmic reticulum, where it mediates the condensation reaction catalyzing the formation of very-long–chain (VLC) (C-28 to C-40) fatty acids, saturated and polyunsaturated (PUFA). The defective gene product is truncated at the C terminus, leading to mislocalization and aggregation in other organelles. We hypothesized that the STGD3 truncated mutant may generate mislocalized, and therefore toxic, keto intermediates of fatty acid elongation, thereby contributing to the disease process. Using cell-based and cell-free microsome assays, we found that the truncated protein lacked innate condensation activity. Coexpression of different forms of wild-type and mutant ELOVL4 revealed a large dominant-negative effect of mutant protein on ELOVL4 localization and enzymatic activity, resulting in reduced VLC-PUFA synthesis. The reduction in VLC-PUFA levels in STGD3 and age-related macular degeneration may be a contributing factor to their retinal pathology.
GeroScience | 2017
Nicole M. Ashpole; Sreemathi Logan; Andriy Yabluchanskiy; Matthew Mitschelen; Han Yan; Julie A. Farley; Erik L. Hodges; Zoltan Ungvari; Anna Csiszar; Sixia Chen; Constantin Georgescu; Gene B. Hubbard; Yuji Ikeno; William E. Sonntag
Reduced circulating levels of IGF-1 have been proposed as a conserved anti-aging mechanism that contributes to increased lifespan in diverse experimental models. However, IGF-1 has also been shown to be essential for normal development and the maintenance of tissue function late into the lifespan. These disparate findings suggest that IGF-1 may be a pleiotropic modulator of health and aging, as reductions in IGF-1 may be beneficial for one aspect of aging, but detrimental for another. We postulated that the effects of IGF-1 on tissue health and function in advanced age are dependent on the tissue, the sex of the animal, and the age at which IGF-1 is manipulated. In this study, we examined how alterations in IGF-1 levels at multiple stages of development and aging influence overall lifespan, healthspan, and pathology. Specifically, we investigated the effects of perinatal, post-pubertal, and late-adult onset IGF-1 deficiency using genetic and viral approaches in both male and female igff/f C57Bl/6 mice. Our results support the concept that IGF-1 levels early during lifespan establish the conditions necessary for subsequent healthspan and pathological changes that contribute to aging. Nevertheless, these changes are specific for each sex and tissue. Importantly, late-life IGF-1 deficiency (a time point relevant for human studies) reduces cancer risk but does not increase lifespan. Overall, our results indicate that the levels of IGF-1 during development influence late-life pathology, suggesting that IGF-1 is a developmental driver of healthspan, pathology, and lifespan.
Journal of Lipid Research | 2012
Man Yu; Aaron F. Benham; Sreemathi Logan; R. Steven Brush; Nawajes A. Mandal; Robert E. Anderson; Martin-Paul Agbaga
We hypothesized that reduction/loss of very long chain PUFAs (VLC-PUFAs) due to mutations in the ELOngase of very long chain fatty acid-4 (ELOVL4) protein contributes to retinal degeneration in autosomal dominant Stargardt-like macular dystrophy (STGD3) and age-related macular degeneration; hence, increasing VLC-PUFA in the retina of these patients could provide some therapeutic benefits. Thus, we tested the efficiency of elongation of C20-C22 PUFA by the ELOVL4 protein to determine which substrates are the best precursors for biosynthesis of VLC-PUFA. The ELOVL4 protein was expressed in pheochromocytoma cells, while green fluorescent protein-expressing and nontransduced cells served as controls. The cells were treated with 20:5n3, 22:6n3, and 20:4n6, either individually or in equal combinations. Both transduced and control cells internalized and elongated the supplemented FAs to C22-C26 precursors. Only ELOVL4-expressing cells synthesized C28-C38 VLC-PUFA from these precursors. In general, 20:5n3 was more efficiently elongated to VLC-PUFA in the ELOVL4-expressing cells, regardless of whether it was in combination with 22:6n3 or with 20:4n6. In each FA treatment group, C34 and C36 VLC-PUFAs were the predominant VLC-PUFAs in the ELOVL4-expressing cells. In summary, 20:5n3, followed by 20:4n6, seems to be the best precursor for boosting the synthesis of VLC-PUFA by ELOVL4 protein.
Epigenetics & Chromatin | 2016
Niran Hadad; Dustin R. Masser; Sreemathi Logan; Benjamin Wronowski; Colleen A. Mangold; Nicholas W. Clark; Laura Otalora; Archana Unnikrishnan; Matthew M. Ford; Cory B. Giles; Jonathan D. Wren; Arlan Richardson; William E. Sonntag; David R. Stanford; Willard M. Freeman
BackgroundChanges to the epigenome with aging, and DNA modifications in particular, have been proposed as a central regulator of the aging process, a predictor of mortality, and a contributor to the pathogenesis of age-related diseases. In the central nervous system, control of learning and memory, neurogenesis, and plasticity require changes in cytosine methylation and hydroxymethylation. Although genome-wide decreases in methylation with aging are often reported as scientific dogma, primary research reports describe decreases, increases, or lack of change in methylation and hydroxymethylation and their principle regulators, DNA methyltransferases and ten-eleven translocation dioxygenases in the hippocampus. Furthermore, existing data are limited to only male animals.ResultsThrough examination of the hippocampus in young, adult, and old male and female mice by antibody-based, pyrosequencing, and whole-genome oxidative bisulfite sequencing methods, we provide compelling evidence that contradicts the genomic hypomethylation theory of aging. We also demonstrate that expression of DNA methyltransferases and ten-eleven translocation dioxygenases is not differentially regulated with aging or between the sexes, including the proposed cognitive aging regulator DNMT3a2. Using oxidative bisulfite sequencing that discriminates methylation from hydroxymethylation and by cytosine (CG and non-CG) context, we observe sex differences in average CG methylation and hydroxymethylation of the X chromosome, and small age-related differences in hydroxymethylation of CG island shores and shelves, and methylation of promoter regions.ConclusionThese findings clarify a long-standing misconception of the epigenomic response to aging and demonstrate the need for studies of base-specific methylation and hydroxymethylation with aging in both sexes.
Journal of Bone and Mineral Research | 2016
Nicole M. Ashpole; Jacquelyn C Herron; Matthew Mitschelen; Julie A. Farley; Sreemathi Logan; Han Yan; Zoltan Ungvari; Erik L. Hodges; Anna Csiszar; Yuji Ikeno; Mary Beth Humphrey; William E. Sonntag
Advanced aging is associated with increased risk of bone fracture, especially within the vertebrae, which exhibit significant reductions in trabecular bone structure. Aging is also associated with a reduction in circulating levels of insulin‐like growth factor (IGF‐1). Studies have suggested that the reduction in IGF‐1 compromises healthspan, whereas others report that loss of IGF‐1 is beneficial because it increases healthspan and lifespan. To date, the effect of decreases in circulating IGF‐1 on vertebral bone aging has not been thoroughly investigated. Here, we delineate the consequences of a loss of circulating IGF‐1 on vertebral bone aging in male and female Igff/f mice. IGF‐1 was reduced at multiple specific time points during the mouse lifespan: early in postnatal development (crossing albumin–cyclic recombinase [Cre] mice with Igff/f mice); and in early adulthood and in late adulthood using hepatic‐specific viral vectors (AAV8‐TBG‐Cre). Vertebrae bone structure was analyzed at 27 months of age using micro–computed tomography (μCT) and quantitative bone histomorphometry. Consistent with previous studies, both male and female mice exhibited age‐related reductions in vertebral bone structure. In male mice, reduction of circulating IGF‐1 induced at any age did not diminish vertebral bone loss. Interestingly, early‐life loss of IGF‐1 in females resulted in a 67% increase in vertebral bone volume fraction, as well as increased connectivity density and increased trabecular number. The maintenance of bone structure in the early‐life IGF‐1–deficient females was associated with increased osteoblast surface and an increased ratio of osteoprotegerin/receptor‐activator of NF‐κB‐ligand (RANKL) levels in circulation. Within 3 months of a loss of IGF‐1, there was a 2.2‐fold increase in insulin receptor expression within the vertebral bones of our female mice, suggesting that local signaling may compensate for the loss of circulating IGF‐1. Together, these data suggest the age‐related loss of vertebral bone density in females can be reduced by modifying circulating IGF‐1 levels early in life.
Journal of Lipid Research | 2014
Sreemathi Logan; Martin-Paul Agbaga; Michael D. Chan; Richard S. Brush; Robert E. Anderson
Autosomal dominant Stargardt-like macular dystrophy (STGD3) in humans results from mutations in elongation of very long chain FAs-like 4 (ELOVL4), which leads to vision loss in young adults. ELOVL4 is an integral endoplasmic reticulum (ER) protein that mediates the elongation of very long chain (VLC) FAs. Mutations in ELOVL4 lead to truncation and mislocalization of the translated protein from the ER, the site of FA elongation. Little is known about the enzymatic elongation of VLC-FAs by ELOVL4. We over-expressed full-length mouse ELOVL4, an N-glycosylation-deficient mutant, an ER-retention mutant, and mutants of active site histidines to parse their individual roles in VLC-FA elongation. ELOVL4 elongated appropriate precursors to the corresponding VLC-FA species ≥28 carbons. Active site histidine mutants of ELOVL4 did not elongate appropriate precursors, establishing ELOVL4 as the elongase. Displacing ELOVL4 from the ER was sufficient to cause loss of condensation activity, while absence of N-glycosylation was irrelevant for enzyme function. This study shows that ELOVL4 enzymatic activity is governed by individual histidines in its active site and the ER microenvironment, both of which are essential for elongation of VLC-FAs.
Investigative Ophthalmology & Visual Science | 2013
Gina L. Griffith; Robert A. Russell; Anne Kasus-Jacobi; Elangovan Thavathiru; Melva L. Gonzalez; Sreemathi Logan
PURPOSE The objective of this study was to elucidate the signaling pathway through which cationic antimicrobial protein of 37 kDa (CAP37) mediates human corneal epithelial cell (HCEC) chemotaxis. METHODS Immortalized HCECs were treated with pertussis toxin (10 and 1000 ng/mL), protein kinase C (PKC) inhibitors (calphostin c, 50 nM and Ro-31-8220, 100 nM), phorbol esters (phorbol 12,13-dibutyrate, 200 nM and phorbol 12-myristate 13-acetate, 1 μM) known to deplete PKC isoforms, and siRNAs (400 nM) before a modified Boyden chamber assay was used to determine the effect of these inhibitors and siRNAs on CAP37-directed HCEC migration. PKCδ protein levels, PKCδ-Thr(505) phosphorylation, and PKCδ kinase activity was assessed in CAP37-treated HCECs using immunohistochemistry, Western blotting, and a kinase activity assay, respectively. RESULTS Chemotaxis studies revealed that treatment with pertussis toxin, PKC inhibitors, phorbol esters, and siRNAs significantly inhibited CAP37-mediated chemotaxis compared with untreated controls. CAP37 treatment increased PKCδ protein levels and led to PKCδ phosphorylation on residue Thr(505). Direct activation of PKCδ by CAP37 was demonstrated using a kinase activity assay. CONCLUSIONS These findings lead us to conclude that CAP37 is an important regulator of corneal epithelial cell migration and mediates its effects through PKCδ.
Medical Mycology | 2009
Irina Tsyshevskaya-Hoover; Heather Hinsley; Sreemathi Logan; Melissa Nguyen; Thuy-Trang Nguyen; Jan Pohl; Karen L. Wozniak; Paul L. Fidel
The primary bactericidal domain of CAP37, a cationic antimicrobial protein with potent activity against Gram-negative organisms was previously shown to reside between amino acids 20 through 44 (NQGRHFCGGALIHARFVMTAASCFQ) of the native protein. In this study, we explored the efficacy of four synthetic CAP37 peptide analogs, based on this sequence, against various Candida species including fluconazole-sensitive and -resistant isolates of C. albicans. Three of the peptides demonstrated strong antifungal activity for C. albicans, including fluconazole-resistant isolates of C. albicans and were active against C. guilliermondii, C. tropicalis, C. pseudotropicalis, C. parapsilosis, and C. dubliniensis. The peptides were ineffective against C. glabrata, C. krusei, and Saccharomyces cerevisiae. For C. albicans isolates, the peptides had relatively greater activity against blastoconidia than hyphal forms, although strong antifungal activity was observed with pseudohyphal forms of the various Candida species tested. Kinetic studies demonstrated fungicidal rather than fungistatic activity. These findings indicate that synthetic peptides based on the antimicrobial domain of CAP37 also have activity against eukaryotic organisms suggesting a broader range of activity than originally demonstrated and show for the first time their potent fungicidal activity.
Molecular metabolism | 2018
Sreemathi Logan; Gavin Pharaoh; M. Caleb Marlin; Dustin R. Masser; Satoshi Matsuzaki; Benjamin Wronowski; Alexander Yeganeh; Eileen E. Parks; Pavithra Premkumar; Julie A. Farley; Daniel Owen; Kenneth M. Humphries; Michael Kinter; Willard M. Freeman; Luke I. Szweda; Holly Van Remmen; William E. Sonntag
Objective A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS) are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1) that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f). The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results Our results indicate that a reduction in IGF-1 receptor (IGFR) expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal-dependent spatial learning. Age-related astrocytic dysfunction caused by diminished IGF-1 signaling may contribute to the pathogenesis of Alzheimers disease and other age-associated cognitive pathologies.
Advances in Experimental Medicine and Biology | 2014
Sreemathi Logan; Robert E. Anderson
Autosomal dominant Stargardt3 Macular Dystrophy (STGD3) results from mutations in the ELOVL4 gene. ELOVL4 protein localizes to the endoplasmic reticulum (ER), where it mediates the rate-limiting condensation reaction during very long-chain (VLC, ≥ C28) fatty acid biosynthesis. The defective gene product is truncated at the C-terminus, leading to mislocalization and aggregation in other organelles. In this review, we summarize our current understanding of the disease-causing mutation and its potential role in STGD3 pathogenesis.