Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Bakker is active.

Publication


Featured researches published by Julie Bakker.


Hormones and Behavior | 2002

Sexual Partner Preference Requires a Functional Aromatase (Cyp19) Gene in Male Mice

Julie Bakker; Shin-ichiro Honda; Nobuhiro Harada; Jacques Balthazart

Sexual motivation, sexual partner preference, and sexual performance represent three different aspects of sexual behavior that are critical in determining the reproductive success of a species. Although the display of sexual behavior is under strict hormonal control in both sexes, the relative roles of androgen and estrogen receptors in activating the various components of male sexual behavior are still largely unknown. A recently developed mouse model that is deficient in estradiol due to targeted disruption of exons 1 and 2 of the Cyp19 gene (aromatase knockout (ArKO) mice) was used here to analyze the role of estradiol in the control of all three aspects of male sexual behavior. When tested in a Y-maze providing volatile olfactory cues, male ArKO mice did not show a preference for the odors from an estrous female over those from an intact male, whereas wild-type (WT) and heterozygous (HET) males clearly preferred to sniff estrous odors. When provided with visual and olfactory cues, male ArKO mice also failed to show a preference for an estrous female when given a choice between an estrous female and an empty arm. However, sexual partner preferences of male ArKO mice were not sex-reversed: they did not prefer to investigate an intact male over an estrous female or empty arm. Thus, male ArKO mice seemed to have general deficits in discriminating between conspecifics by using olfactory and visual cues. Male coital behavior was also severely impaired in male ArKO mice: they displayed significantly fewer mounts, intromissions, and ejaculations than WT and HET males. Latencies to first mount or intromission were also significantly longer in ArKO males compared to WT and HET males, in addition to them showing less interest in investigating olfactory and visual cues in a Y-maze, suggesting that they were sexually less motivated. However, three out of seven male ArKO mice were capable of siring litters provided they were housed with a female for a prolonged period of time. In conclusion, aromatization of testosterone to estradiol appears to be essential for sexual motivation and sexual partner preference. By contrast, estradiol may play only a limited role in the expression of male coital behaviors.


Behavioural Brain Research | 2009

The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior

Matthieu Keller; Michael J. Baum; Olivier Brock; Peter A. Brennan; Julie Bakker

In the field of sensory perception, one noticeable fact regarding olfactory perception is the existence of several olfactory subsystems involved in the detection and processing of olfactory information. Indeed, the vomeronasal or accessory olfactory system is usually conceived as being involved in the processing of pheromones as it is closely connected to the hypothalamus, thereby controlling reproductive function. By contrast, the main olfactory system is considered as a general analyzer of volatile chemosignals, used in the context of social communication, for the identification of the status of conspecifics. The respective roles played by the main and the accessory olfactory systems in the control of mate recognition and sexual behavior are at present still controversial. We summarize in this review recent results showing that both the main and accessory olfactory systems are able to process partially overlapping sets of sexual chemosignals and that both systems support complimentary aspects in mate recognition and in the control of sexual behavior.


European Journal of Neuroscience | 2006

The vomeronasal organ is required for the expression of lordosis behaviour, but not sex discrimination in female mice

Matthieu Keller; Sylvie Pierman; Quentin Douhard; Michael J. Baum; Julie Bakker

The role of the vomeronasal organ (VNO) in mediating neuroendocrine responses in female mice is well known; however, whether the VNO is equally important for sex discrimination is more controversial as evidence exists for a role of the main olfactory system in mate recognition. Therefore, we studied the effect of VNO removal (VNOx) on the ability of female mice to discriminate between volatile and non‐volatile odours of conspecifics of the two sexes and in different endocrine states using Y‐maze tests. VNOx female mice were able to reliably distinguish between male and female or male and gonadectomized (gdx) male volatile odours. However, when subjects had to discriminate between male and female or gdx male non‐volatile odours, VNOx females were no longer able to discriminate between sex or different endocrine status. These results thus show that the VNO is primarily involved in the detection and processing of non‐volatile odours, and that female mice can use volatile odours detected and processed by the main olfactory system for mate recognition. However, VNO inputs are needed to promote contact with the male, including facilitation of lordosis responses to his mounts. A single subcutaneous injection with gonadotropin‐releasing hormone (GnRH) partially reversed the deficit in lordosis behaviour observed in VNOx females suggesting that VNO inputs may reach hypothalamic GnRH neurons to influence the display of sexual behaviour.


Frontiers in Neuroendocrinology | 2008

Role for estradiol in female-typical brain and behavioral sexual differentiation

Julie Bakker; Michael J. Baum

The importance of estrogens in controlling brain and behavioral sexual differentiation in female rodents is an unresolved issue in the field of behavioral neuroendocrinology. Whereas, the current dogma states that the female brain develops independently of estradiol, many studies have hinted at possible roles of estrogen in female sexual differentiation. Accordingly, it has been proposed that alpha-fetoprotein, a fetal plasma protein that binds estrogens with high affinity, has more than a neuroprotective role and specifically delivers estrogens to target brain cells to ensure female differentiation. Here, we review new results obtained in aromatase and alpha-fetoprotein knockout mice showing that estrogens can have both feminizing and defeminizing effects on the developing neural mechanisms that control sexual behavior. We propose that the defeminizing action of estradiol normally occurs prenatally in males and is avoided in fetal females because of the protective actions of alpha-fetoprotein, whereas the feminizing action of estradiol normally occurs postnatally in genetic females.


Hormones and Behavior | 2004

Restoration of male sexual behavior by adult exogenous estrogens in male aromatase knockout mice

Julie Bakker; Shin-ichiro Honda; Nobuhiro Harada; Jacques Balthazart

We previously found that male aromatase knockout (ArKO) mice that carry a targeted mutation in exons 1 and 2 of the CYP19 gene and as a result cannot aromatize androgen to estrogen show impaired sexual behavior in adulthood. To determine whether this impairment was due to a lack of activation of sexual behavior by estradiol, we studied here male coital behavior as well as olfactory investigation of sexually relevant odors in male ArKO mice following adult treatment with estradiol benzoate (EB) or dihydrotestosterone propionate (DHTP). Again, we found that gonadally intact ArKO males show pronounced behavioral deficits affecting their male coital behavior as well as their olfactory investigation of volatile body odors but not that of soiled bedding. Deficits in male coital behavior were largely corrected following adult treatment with EB and the androgen DHTP, suggesting that estradiol has prominent activational effects on this behavior. By contrast, adult treatment with EB to either castrated or gonadally intact ArKO males did not stimulate olfactory investigation of volatile body odors, suggesting that this impairment may result from a lack of proper organization of this behavior during ontogeny due to the chronic lack of estrogens. In conclusion, the present studies suggest that the behavioral deficits in sexual behavior in male ArKO mice result predominantly from a lack of activation of the behavior by estrogens. This is in contrast with earlier pharmacological studies performed on rats and ferrets that have suggested strong organizational effects of estradiol on male sexual behavior.


Behavioral Neuroscience | 1993

Hormonal Regulation of Adult Partner Preference Behavior in Neonatally ATD-Treated Male Rats

Julie Bakker; T. Brand; J. van Ophemert; A. K. Slob

Male rats, neonatally treated with ATD (1,4,6-androstatriene-3,17-dione), which blocks the aromatization of testosterone into estradiol (E2), were tested for adult partner preference behavior (PPB; estrous female vs. active male). Castration caused a decrease in preference for the female partner in all males, with ATD males showing lower preference for the female partner than controls. Long-term castrated males did not show preference for either partner. Precastration levels of PPB in control males occurred after treatment with E2 or dihydrotestosterone (DHT) plus E2. DHT alone had no effect on PPB. With E2 alone, the ATD males clearly preferred the male partner. When DHT was added, these ATD males showed no preference for either partner or a low preference for the female partner. In conclusion, adult PPB in male rats is activated by endogenous testosterone or by both its metabolites (DHT and E2) or by E2 alone. ATD males showed a much lower preference for the female. There was a differential effect of DHT and E2: DHT had no effect, but E2 clearly caused ATD males to prefer the male partner and control males to prefer the female partner.


European Journal of Neuroscience | 2004

Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.

Christina Dalla; Katerina Antoniou; Z. Papadopoulou-Daifoti; Jacques Balthazart; Julie Bakker

We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or ‘depressive‐like’ symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild‐type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit ‘depressive‐like’ symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the ‘depressive‐like’ profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.


The Journal of Neuroscience | 2007

Sexual Behavior Activity Tracks Rapid Changes in Brain Estrogen Concentrations

Mélanie Taziaux; Matthieu Keller; Julie Bakker; Jacques Balthazart

Estrogens are classically viewed as hormones that bind to intracellular receptors, which then act as transcription factors to modulate gene expression; however, they also affect many aspects of neuronal functioning by rapid nongenomic actions. Brain estrogen production can be regulated within minutes by changes in aromatase (estrogen synthase) activity as a result of calcium-dependent phosphorylations of the enzyme. To determine the effects of rapid changes in estrogen availability on male copulatory behavior, we mimicked in male mice the rapid upregulation and downregulation of brain estrogen concentration that should occur after inactivation or activation of aromatase activity. A single injection of different aromatase inhibitors [Vorozole, 1,4,6-androstatrien-3,17-dione (ATD), or its metabolite 17-OH-ATD (1,4,6-androstatrien-17β-ol-3-one)] almost completely suppressed male sexual behavior (mounts and intromissions) expressed 10–20 min later by C57BL/6J mice but did not affect behavior in aromatase knock-out (ArKO) mice, activated by daily injections of estradiol benzoate, thereby confirming the specificity of the behavioral inhibition observed in wild-type mice. The rapid ATD-induced inhibition was reversed by the simultaneous injection of a large dose of estradiol. A single injection of estradiol to ArKO mice also activated male sexual behavior within 15 min. Thus, rapid increases or decreases in brain estrogen concentrations are followed within minutes by corresponding changes in male sexual behavior. Sexual behavior can thus be used to monitor changes in local estrogen concentrations and analyze the mechanisms mediating the rapid decline in estrogen signaling that takes place after inhibition of estrogen synthesis.


Journal of Neuroendocrinology | 2003

Sexual differentiation of the neuroendocrine mechanisms regulating mate recognition in mammals.

Julie Bakker

When in breeding condition, male and female mammals seek out and mate with opposite‐sex conspecifics. The neural mechanisms controlling mate recognition and heterosexual partner preference are sexually differentiated by the perinatal actions of sex steroid hormones. Many mammalian species use odours to identify potential mates. Thus, sex differences in partner preference may actually reflect sex differences in how male and female mammals perceive socially relevant odours. Two olfactory systems have evolved in vertebrates that differ considerably in their anatomy and function. It is generally believed that the main olfactory system is used to detect a wide variety of volatile odours derived from food prey among many sources, whereas the accessory olfactory system has evolved to detect and process primarily nonvolatile odours shown to influence reproductive behaviours and neuroendocrine functions. Some recent results obtained in oestradiol‐deficient aromatase knockout (ArKO) mice that provide evidence for a developmental role of oestradiol in olfactory investigation of volatile body odours are discussed, suggesting that: (i) oestrogens contribute to the development of the main olfactory system and (ii) mate recognition is mediated by the main as opposed to the accessory olfactory system. Thus, sex differences in mate recognition and sexual partner preference may reflect sex differences in the perception of odours by the main olfactory system.


The Journal of Neuroscience | 2011

The Development of Female Sexual Behavior Requires Prepubertal Estradiol

Olivier Brock; Michael J. Baum; Julie Bakker

The classic view of brain and behavioral sexual differentiation holds that the neural mechanisms controlling sexual behavior in female rodents develop in the absence of ovarian sex hormone actions. However, in a previous study, female aromatase knock-out (ArKO) mice, which cannot convert testosterone to estradiol, showed deficient male-oriented partner preference and lordosis behaviors in response to adult ovarian hormones, raising the possibility that estradiol may contribute to the development of these female sexual behaviors. In the present experiments, administering estradiol prepubertally [between postnatal day 15 (P15) and P25] significantly enhanced the ability of ArKO female mice to display lordosis behavior in response to ovarian hormones administered later in adulthood, whereas treatment with estradiol over an earlier postnatal period (P5–P15) had no such effect. Treatment of ArKO females with estradiol between P15 and P25 also rescued their later preference to approach distal cues from an intact male over an estrous female. ArKO females also displayed significantly less female-directed (male-typical) mounting behavior than wild-type control females when treated with testosterone in adulthood. Prepubertal estradiol treatment failed to reverse this deficit in ArKO females, whereas earlier postnatal estradiol augmented later mounting in both genotypes. Our results provide new evidence for an organizing role of prepubertal estradiol in the development of neural mechanisms that control female-typical sexual behavior.

Collaboration


Dive into the Julie Bakker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dick J. Veltman

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge