Julie Delaloye
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie Delaloye.
Lancet Infectious Diseases | 2015
Jonathan Cohen; Jean Louis Vincent; Neill K. J. Adhikari; Flávia Ribeiro Machado; Derek C. Angus; Thierry Calandra; Katia Jaton; Stefano Giulieri; Julie Delaloye; Steven M. Opal; Kevin J. Tracey; Tom van der Poll; Eric Pelfrene
Sepsis is a common and lethal syndrome: although outcomes have improved, mortality remains high. No specific anti-sepsis treatments exist; as such, management of patients relies mainly on early recognition allowing correct therapeutic measures to be started rapidly, including administration of appropriate antibiotics, source control measures when necessary, and resuscitation with intravenous fluids and vasoactive drugs when needed. Although substantial developments have been made in the understanding of the basic pathogenesis of sepsis and the complex interplay of host, pathogen, and environment that affect the incidence and course of the disease, sepsis has stubbornly resisted all efforts to successfully develop and then deploy new and improved treatments. Existing models of clinical research seem increasingly unlikely to produce new therapies that will result in a step change in clinical outcomes. In this Commission, we set out our understanding of the clinical epidemiology and management of sepsis and then ask how the present approaches might be challenged to develop a new roadmap for future research.
PLOS Pathogens | 2009
Julie Delaloye; Thierry Roger; Quynh-Giao Steiner-Tardivel; Didier Le Roy; Marlies Knaup Reymond; Shizuo Akira; Virginie Pétrilli; Carmen Elena Gómez; Beatriz Perdiguero; Jürg Tschopp; Giuseppe Pantaleo; Mariano Esteban; Thierry Calandra
Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNβ-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNβ and IFNβ-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1β. Transcription of the Il1b gene was markedly impaired in TLR2−/− and MyD88−/− BMDM, whereas mature and secreted IL-1β was massively reduced in NALP3−/− BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNβ and IL-1β by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.
Virulence | 2014
Julie Delaloye; Thierry Calandra
Invasive fungal infections are an increasingly frequent etiology of sepsis in critically ill patients causing substantial morbidity and mortality. Candida species are by far the predominant agent of fungal sepsis accounting for 10% to 15% of health-care associated infections, about 5% of all cases of severe sepsis and septic shock and are the fourth most common bloodstream isolates in the United States. One-third of all episodes of candidemia occur in the intensive care setting. Early diagnosis of invasive candidiasis is critical in order to initiate antifungal agents promptly. Delay in the administration of appropriate therapy increases mortality. Unfortunately, risk factors, clinical and radiological manifestations are quite unspecific and conventional culture methods are suboptimal. Non-culture based methods (such as mannan, anti-mannan, β-d-glucan, and polymerase chain reaction) have emerged but remain investigational or require additional testing in the ICU setting. Few prophylactic or pre-emptive studies have been performed in critically ill patients. They tended to be underpowered and their clinical usefulness remains to be established under most circumstances. The antifungal armamentarium has expanded considerably with the advent of lipid formulations of amphotericin B, the newest triazoles and the echinocandins. Clinical trials have shown that the triazoles and echinocandins are efficacious and well tolerated antifungal therapies. Clinical practice guidelines for the management of invasive candidiasis have been published by the European Society for Clinical Microbiology and Infectious Diseases and the Infectious Diseases Society of North America.
The Journal of Infectious Diseases | 2013
Thierry Roger; Julie Delaloye; Anne-Laure Chanson; Marlyse Giddey; Didier Le Roy; Thierry Calandra
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIFs regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
PLOS ONE | 2012
Beatriz Perdiguero; Carmen Elena Gómez; José Luis Nájera; Carlos Oscar S. Sorzano; Julie Delaloye; Rubén González-Sanz; Victoria Jiménez; Thierry Roger; Thierry Calandra; Giuseppe Pantaleo; Mariano Esteban
Vaccinia virus (VACV) encodes an anti-apoptotic Bcl-2-like protein F1 that acts as an inhibitor of caspase-9 and of the Bak/Bax checkpoint but the role of this gene in immune responses is not known. Because dendritic cells that have phagocytosed apoptotic infected cells cross-present viral antigens to cytotoxic T cells inducing an antigen-specific immunity, we hypothesized that deletion of the viral anti-apoptotic F1L gene might have a profound effect on the capacity of poxvirus vectors to activate specific immune responses to virus-expressed recombinant antigens. This has been tested in a mouse model with an F1L deletion mutant of the HIV/AIDS vaccine candidate MVA-C that expresses Env and Gag-Pol-Nef antigens (MVA-C-ΔF1L). The viral gene F1L is not required for virus replication in cultured cells and its deletion in MVA-C induces extensive apoptosis and expression of immunomodulatory genes in infected cells. Analysis of the immune responses induced in BALB/c mice after DNA prime/MVA boost revealed that, in comparison with parental MVA-C, the mutant MVA-C-ΔF1L improves the magnitude of the HIV-1-specific CD8 T cell adaptive immune responses and impacts on the CD8 T cell memory phase by enhancing the magnitude of the response, reducing the contraction phase and changing the memory differentiation pattern. These findings reveal the immunomodulatory role of F1L and that the loss of this gene is a valid strategy for the optimization of MVA as vaccine vector.
PLOS ONE | 2013
Beatriz Perdiguero; Carmen Elena Gómez; Mauro Di Pilato; Carlos Oscar S. Sorzano; Julie Delaloye; Thierry Roger; Thierry Calandra; Giuseppe Pantaleo; Mariano Esteban
Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates.
PLOS ONE | 2012
Carmen Elena Gómez; Beatriz Perdiguero; Victoria Jiménez; Abdelali Filali-Mouhim; Khader Ghneim; Elias K. Haddad; Esther D. Quakkerlaar; Julie Delaloye; Alexandre Harari; Thierry Roger; Thomas Dunhen; Rafick Pierre Sekaly; Cornelis J. M. Melief; Thierry Calandra; Federica Sallusto; Antonio Lanzavecchia; Ralf Wagner; Giuseppe Pantaleo; Mariano Esteban
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Journal of Virology | 2015
Beatriz Perdiguero; Carmen Elena Gómez; Victoria Cepeda; Lucas Sánchez-Sampedro; Juan García-Arriaza; Ernesto Mejías-Pérez; Victoria Jiménez; Cristina Sánchez; Carlos Oscar S. Sorzano; Juan Carlos Oliveros; Julie Delaloye; Thierry Roger; Thierry Calandra; Benedikt Asbach; Ralf Wagner; Karen V. Kibler; Bertram L. Jacobs; Giuseppe Pantaleo; Mariano Esteban
ABSTRACT The generation of vaccines against HIV/AIDS able to induce long-lasting protective immunity remains a major goal in the HIV field. The modest efficacy (31.2%) against HIV infection observed in the RV144 phase III clinical trial highlighted the need for further improvement of HIV vaccine candidates, formulation, and vaccine regimen. In this study, we have generated two novel NYVAC vectors, expressing HIV-1 clade C gp140(ZM96) (NYVAC-gp140) or Gag(ZM96)-Pol-Nef(CN54) (NYVAC-Gag-Pol-Nef), and defined their virological and immunological characteristics in cultured cells and in mice. The insertion of HIV genes does not affect the replication capacity of NYVAC recombinants in primary chicken embryo fibroblast cells, HIV sequences remain stable after multiple passages, and HIV antigens are correctly expressed and released from cells, with Env as a trimer (NYVAC-gp140), while in NYVAC-Gag-Pol-Nef-infected cells Gag-induced virus-like particles (VLPs) are abundant. Electron microscopy revealed that VLPs accumulated with time at the cell surface, with no interference with NYVAC morphogenesis. Both vectors trigger specific innate responses in human cells and show an attenuation profile in immunocompromised adult BALB/c and newborn CD1 mice after intracranial inoculation. Analysis of the immune responses elicited in mice after homologous NYVAC prime/NYVAC boost immunization shows that recombinant viruses induced polyfunctional Env-specific CD4 or Gag-specific CD8 T cell responses. Antibody responses against gp140 and p17/p24 were elicited. Our findings showed important insights into virus-host cell interactions of NYVAC vectors expressing HIV antigens, with the activation of specific immune parameters which will help to unravel potential correlates of protection against HIV in human clinical trials with these vectors. IMPORTANCE We have generated two novel NYVAC-based HIV vaccine candidates expressing HIV-1 clade C trimeric soluble gp140 (ZM96) and Gag(ZM96)-Pol-Nef(CN54) as VLPs. These vectors are stable and express high levels of both HIV-1 antigens. Gag-induced VLPs do not interfere with NYVAC morphogenesis, are highly attenuated in immunocompromised and newborn mice after intracranial inoculation, trigger specific innate immune responses in human cells, and activate T (Env-specific CD4 and Gag-specific CD8) and B cell immune responses to the HIV antigens, leading to high antibody titers against gp140. For these reasons, these vectors can be considered vaccine candidates against HIV/AIDS and currently are being tested in macaques and humans.
Cytokine | 2012
Julie Delaloye; Irma J.A. De Bruin; Katharine Darling; Marlies Knaup Reymond; Fred C.G.J. Sweep; Thierry Roger; Thierry Calandra; Matthias Cavassini
Considering macrophage migratory inhibitory factor (MIF) as a critical pro-inflammatory cytokine of the immune system, we evaluated plasma MIF levels in 89 HIV-infected adults. Plasma MIF levels were higher in HIV-infected than in HIV-negative individuals. Highest MIF levels were observed during acute HIV infection (AHI) whilst patients on antiretroviral therapy (ART) had lower MIF levels, regardless of ART efficacy. Our results suggest that MIF is an integral component of the cytokine storm characteristic of AHI.
Clinical Microbiology and Infection | 2018
Mario Fernández-Ruiz; Yolanda Meije; Oriol Manuel; Hamdi Akan; Jordi Carratalà; José María Aguado; Julie Delaloye
BACKGROUND The field of new biological agents is increasing exponentially over the past years, thus making prevention and management of associated infectious complications a challenge for nonspecialized clinicians. AIMS The present consensus document is an initiative of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Compromised Hosts (ESGICH) aimed at analysing, from an infectious diseases perspective, the safety of targeted and biological therapies. SOURCES Computer-based Medline searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT The document is structured in sections according to the targeted site of action of each drug class: proinflammatory cytokines; interleukins, immunoglobulins and other soluble immune mediators; cell surface receptors and associated signaling pathways; intracellular signaling pathways; lymphoma and leukaemia cells surface antigens; and other targeted therapies. A common outline is followed for each agent: summary of mechanism of action, approved indications and common off-label uses; expected impact on the hosts susceptibility to infection; available clinical evidence (i.e. pivotal clinical trials, postmarketing studies, case series and case reports); and suggested prevention and risk minimization strategies. The methodologic and practical difficulties of assessing the specific risk posed by a given agent are also discussed. IMPLICATIONS This ESGICH consensus document constitutes not only a comprehensive overview of the molecular rationale and clinical experience on the risk of infection associated with approved targeted therapies but also an attempt to propose a series of recommendations with the purpose of guiding physicians from different disciplines into this emerging framework.