Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie LaRoche is active.

Publication


Featured researches published by Julie LaRoche.


PLOS ONE | 2011

Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones

Tim Kalvelage; Marlene Mark Jensen; Sergio Contreras; Niels Peter Revsbech; Phyllis Lam; Marcel Günter; Julie LaRoche; Gaute Lavik; Marcel M. M. Kuypers

Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ∼0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3 − reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ∼20 µmol L−1. In contrast, NH3 oxidation to NO2 − and NO3 − reduction to NO2 − as the main NH4 + and NO2 − sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3 − reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3 − reduction. With anammox bacteria in the marine environment being active at O2 levels ∼20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.


Environmental Microbiology | 2010

Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations

Orly Levitan; Christopher M. Brown; Stefanie Sudhaus; Douglas A. Campbell; Julie LaRoche; Ilana Berman-Frank

We examined the influence of forecasted changes in global temperatures and pCO(2) on N(2) fixation and assimilation in the ecologically important cyanobacterium Trichodesmium spp. Changes of mRNA transcripts (nifH, glnA, hetR, psbA, psaB), protein (nitrogenase, glutamine synthetase) pools and enzymatic activity (nitrogenase) were measured under varying pCO(2) and temperatures. High pCO(2) shifted transcript patterns of all genes, resulting in a more synchronized diel expression. Under the same conditions, we did not observe any significant changes in the protein pools or in total cellular allocations of carbon and nitrogen (i.e. C : N ratio remained stable). Independently of temperature, high pCO(2) (900 microatm) elevated N(2) fixation rates. Levels of the key enzymes, nitrogenase and glutamine synthetase that mediate nitrogen assimilation did not increase, implying that the high pCO(2) allowed higher reaction turnover rates through these key enzymes. Moreover, increased temperatures and high pCO(2) resulted in higher C : P ratios. The plasticity in phosphorous stoichiometry combined with higher enzymatic efficiencies lead to higher growth rates. In cyanobacteria photosynthesis, carbon uptake, respiration, N(2) fixation and nitrogen assimilation share cellular components. We propose that shifted cellular resource and energy allocation among those components will enable Trichodesmium grown at elevated temperatures and pCO(2) to extend its niche in the future ocean, through both tolerance of a broader temperature range and higher P plasticity.


Environmental Microbiology | 2010

Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501.

Wiebke Mohr; Maria P. Intermaggio; Julie LaRoche

We examined the diel variation in nitrogen and carbon metabolism in Crocosphaera watsonii WH8501 at the physiological and gene expression level in order to determine the temporal constraints for N2 fixation and photosynthesis. N2 fixation and photosynthesis were restricted to the dark and light periods, respectively, during a 24 h light-dark cycle. All genes studied here except one (psbA2) showed diel variations in their expression levels. The highest variation was seen in nifH and nifX relative transcript abundance with a factor of 3-5x10(3) between light and dark periods. Photosynthesis genes showed less variation with a maximum factor of about 500 and always had high relative transcript abundances relative to other genes. At the protein level, the photosystems appeared more stable than the nitrogenase complex over a 24 h light-dark cycle, suggesting that C. watsonii retains the ability to photosynthesize during the dark period of the diel cycle. In contrast, nitrogenase is synthesized daily and exhibits peak abundance during the dark period. Our results have implications for field studies with respect to the interpretation of environmental gene expression data.


PLOS ONE | 2010

Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

Martin Barz; Christian Beimgraben; Torsten Staller; Frauke Germer; Friederike Opitz; Claudia Marquardt; Christoph Schwarz; Kirstin Gutekunst; Klaus Heinrich Vanselow; Ruth A. Schmitz; Julie LaRoche; Rüdiger Schulz; Jens Appel

Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles.


BMC Genomics | 2010

Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation.

Markus Lommer; Alexandra-Sophie Roy; Markus Schilhabel; Stefan Schreiber; Philip Rosenstiel; Julie LaRoche

BackgroundAlthough the importance and widespread occurrence of iron limitation in the contemporary ocean is well documented, we still know relatively little about genetic adaptation of phytoplankton to these environments. Compared to its coastal relative Thalassiosira pseudonana, the oceanic diatom Thalassiosira oceanica is highly tolerant to iron limitation. The adaptation to low-iron conditions in T. oceanica has been attributed to a decrease in the photosynthetic components that are rich in iron. Genomic information on T. oceanica may shed light on the genetic basis of the physiological differences between the two species.ResultsThe complete 141790 bp sequence of the T. oceanica chloroplast genome [GenBank: GU323224], assembled from massively parallel pyrosequencing (454) shotgun reads, revealed that the petF gene encoding for ferredoxin, which is localized in the chloroplast genome in T. pseudonana and other diatoms, has been transferred to the nucleus in T. oceanica. The iron-sulfur protein ferredoxin, a key element of the chloroplast electron transport chain, can be replaced by the iron-free flavodoxin under iron-limited growth conditions thereby contributing to a reduction in the cellular iron requirements. From a comparison to the genomic context of the T. pseudonana petF gene, the T. oceanica ortholog can be traced back to its chloroplast origin. The coding potential of the T. oceanica chloroplast genome is comparable to that of T. pseudonana and Phaeodactylum tricornutum, though a novel expressed ORF appears in the genomic region that has been subjected to rearrangements linked to the petF gene transfer event.ConclusionsThe transfer of the petF from the cp to the nuclear genome in T. oceanica represents a major difference between the two closely related species. The ability of T. oceanica to tolerate iron limitation suggests that the transfer of petF from the chloroplast to the nuclear genome might have contributed to the ecological success of this species.


PLOS ONE | 2010

The Influence of pCO2 and Temperature on Gene Expression of Carbon and Nitrogen Pathways in Trichodesmium IMS101

Orly Levitan; Stefanie Sudhaus; Julie LaRoche; Ilana Berman-Frank

Growth, protein amount, and activity levels of metabolic pathways in Trichodesmium are influenced by environmental changes such as elevated pCO2 and temperature. This study examines changes in the expression of essential metabolic genes in Trichodesmium grown under a matrix of pCO2 (400 and 900 µatm) and temperature (25 and 31°C). Using RT-qPCR, we studied 21 genes related to four metabolic functional groups: CO2 concentrating mechanism (bicA1, bicA2, ccmM, ccmK2, ccmK3, ndhF4, ndhD4, ndhL, chpX), energy metabolism (atpB, sod, prx, glcD), nitrogen metabolism (glnA, hetR, nifH), and inorganic carbon fixation and photosynthesis (rbcL, rca, psaB, psaC, psbA). nifH and most photosynthetic genes exhibited relatively high abundance and their expression was influenced by both environmental parameters. A two to three orders of magnitude increase was observed for glnA and hetR only when both pCO2 and temperature were elevated. CO2 concentrating mechanism genes were not affected by pCO2 and temperature and their expression levels were markedly lower than that of the nitrogen metabolism and photosynthetic genes. Many of the CO2 concentrating mechanism genes were co-expressed throughout the day. Our results demonstrate that in Trichodesmium, CO2 concentrating mechanism genes are constitutively expressed. Co-expression of genes from different functional groups were frequently observed during the first half of the photoperiod when oxygenic photosynthesis and N2 fixation take place, pointing at the tight and complex regulation of gene expression in Trichodesmium. Here we provide new data linking environmental changes of pCO2 and temperature to gene expression in Trichodesmium. Although gene expression indicates an active metabolic pathway, there is often an uncoupling between transcription and enzyme activity, such that transcript level cannot usually be directly extrapolated to metabolic activity.


Journal of Phycology | 2010

Emiliania huxleyi (Prymnesiophyceae): nitrogen-metabolism genes and their expression in response to external nitrogen sources.

Annette Bruhn; Julie LaRoche; Katherine Richardson

The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen‐replete and ‐limited conditions is not well understood in this ecologically important species. In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic as well as organic nitrogen sources indicated reduced expression levels of nitrate reductase when cells were grown on NH4+ and a reduced expression level of the putative formamidase when growth was on NO3−. The data reported here suggest the presence of a nitrogen preference hierarchy in E. huxleyi. In addition, the gene encoding for a phosphate repressible phosphate permease was more highly expressed in cells growing on formamide than in cells growing on inorganic nitrogen sources. This finding suggests a coupling between phosphate and nitrogen metabolism, which might give this species a competitive advantage in nutrient‐depleted environments. The potential of using expression of genes investigated here as indicators of specific nitrogen‐metabolism strategies of E. huxleyi in natural populations of phytoplankton is discussed.


Biogeosciences | 2006

Physiological constraints on the global distribution of Trichodesmium – effect of temperature on diazotrophy

Eike Breitbarth; Andreas Oschlies; Julie LaRoche


Marine Ecology Progress Series | 2008

Nitrogen fixation and growth rates of Trichodesmium IMS-101 as a function of light intensity

Eike Breitbarth; Julia Wohlers; Jessica Kläs; Julie LaRoche; Ilka Peeken


Archive | 2015

Atlantic Equatorial Upwelling Study 2011 - Cruise No. MSM18/3 - June 22 - July 21, 2011 - Mindelo (Cape Verde) - Libreville (Gabon)

Arne Körtzinger; Hermann W. Bange; Astrid Bracher; Peter Brandt; Marcus Dengler; Hartmut Herrmann; Julie LaRoche; Christa Marandino; Ulrich Platt; Birgit Quack; Monika Rhein; Martin Visbeck; Douglas W.R. Wallace; Alfred Wiedensohler

Collaboration


Dive into the Julie LaRoche's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Croot

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge