Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ruth A. Schmitz is active.

Publication


Featured researches published by Ruth A. Schmitz.


Applied and Environmental Microbiology | 2000

Screening of Environmental DNA Libraries for the Presence of Genes Conferring Lipolytic Activity on Escherichia coli

Anke Henne; Ruth A. Schmitz; Mechthild Bömeke; Gerhard Gottschalk; Rolf Daniel

ABSTRACT Environmental DNA libraries prepared from three different soil samples were screened for genes conferring lipolytic activity onEscherichia coli clones. Screening on triolein agar revealed 1 positive clone out of 730,000 clones, and screening on tributyrin agar revealed 3 positive clones out of 286,000 E. coli clones. Substrate specificity analysis revealed that one recombinant strain harbored a lipase and the other three contained esterases. The genes responsible for the lipolytic activity were identified and characterized.


Nature | 2012

Doubling of marine dinitrogen-fixation rates based on direct measurements

Tobias Großkopf; Wiebke Mohr; Tina Baustian; Harald Schunck; Diana Gill; Marcel M. M. Kuypers; Gaute Lavik; Ruth A. Schmitz; Douglas W.R. Wallace; Julie LaRoche

Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the oceans nitrogen inventory and primary productivity. Nitrogen-isotope data from ocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000 years (ref. 4). Producing a balanced marine-nitrogen budget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200 Tg N yr−1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimates N2-fixation rates by an average of 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and γ-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14 ± 1 Tg N yr−1 and 24 ±1 Tg N yr−1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103 ± 8 Tg N yr−1 to 177 ± 8 Tg N yr−1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought.


Applied and Environmental Microbiology | 2003

Metagenome survey of biofilms in drinking-water networks

Christel Schmeisser; C. Stöckigt; C. Raasch; Jost Wingender; K. N. Timmis; D. F. Wenderoth; Hans-Curt Flemming; Heiko Liesegang; Ruth A. Schmitz; Karl-Erich Jaeger; Wolfgang R. Streit

ABSTRACT Most naturally occurring biofilms contain a vast majority of microorganisms which have not yet been cultured, and therefore we have little information on the genetic information content of these communities. Therefore, we initiated work to characterize the complex metagenome of model drinking water biofilms grown on rubber-coated valves by employing three different strategies. First, a sequence analysis of 650 16S rRNA clones indicated a high diversity within the biofilm communities, with the majority of the microbes being closely related to the Proteobacteria. Only a small fraction of the 16S rRNA sequences were highly similar to rRNA sequences from Actinobacteria, low-G+C gram-positives and the Cytophaga-Flavobacterium-Bacteroides group. Our second strategy included a snapshot genome sequencing approach. Homology searches in public databases with 5,000 random sequence clones from a small insert library resulted in the identification of 2,200 putative protein-coding sequences, of which 1,026 could be classified into functional groups. Similarity analyses indicated that significant fractions of the genes and proteins identified were highly similar to known proteins observed in the genera Rhizobium, Pseudomonas, and Escherichia. Finally, we report 144 kb of DNA sequence information from four selected cosmid clones, of which two formed a 75-kb overlapping contig. The majority of the proteins identified by whole-cosmid sequencing probably originated from microbes closely related to the alpha-, beta-, and gamma-Proteobacteria. The sequence information was used to set up a database containing the phylogenetic and genomic information on this model microbial community. Concerning the potential health risk of the microbial community studied, no DNA or protein sequences directly linked to pathogenic traits were identified.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability

Dominik Jäger; Cynthia M. Sharma; Jens Thomsen; Claudia Ehlers; Jörg Vogel; Ruth A. Schmitz

Methanosarcina mazei and related mesophilic archaea are the only organisms fermenting acetate, methylamines, and methanol to methane and carbon dioxide, contributing significantly to greenhouse gas production. The biochemistry of these metabolic processes is well studied, and genome sequences are available, yet little is known about the overall transcriptional organization and the noncoding regions representing 25% of the 4.01-Mb genome of M. mazei. We present a genome-wide analysis of transcription start sites (TSS) in M. mazei grown under different nitrogen availabilities. Pyrosequencing-based differential analysis of primary vs. processed 5′ ends of transcripts discovered 876 TSS across the M. mazei genome. Unlike in other archaea, in which leaderless mRNAs are prevalent, the majority of the detected mRNAs in M. mazei carry long untranslated 5′ regions. Our experimental data predict a total of 208 small RNA (sRNA) candidates, mostly from intergenic regions but also antisense to 5′ and 3′ regions of mRNAs. In addition, 40 new small mRNAs with ORFs of ≤30 aa were identified, some of which might have dual functions as mRNA and regulatory sRNA. We confirmed differential expression of several sRNA genes in response to nitrogen availability. Inspection of their promoter regions revealed a unique conserved sequence motif associated with nitrogen-responsive regulation, which might serve as a regulator binding site upstream of the common IIB recognition element. Strikingly, several sRNAs antisense to mRNAs encoding transposases indicate nitrogen-dependent transposition events. This global TSS map in archaea will facilitate a better understanding of transcriptional and posttranscriptional control in the third domain of life.


Environmental Microbiology | 2011

Epibacterial community patterns on marine macroalgae are host-specific but temporally variable

Tim Lachnit; Diana Meske; Martin Wahl; Tilmann Harder; Ruth A. Schmitz

Marine macroalgae are constantly exposed to epibacterial colonizers. The epiphytic bacterial patterns and their temporal and spatial variability on host algae are poorly understood. To investigate the interaction between marine macroalgae and epiphytic bacteria, this study tested if the composition of epibacterial communities on different macroalgae was specific and persisted under varying biotic and abiotic environmental conditions over a 2-year observation time frame. Epibacterial communities on the co-occurring macroalgae Fucus vesiculosus, Gracilaria vermiculophylla and Ulva intestinalis were repeatedly sampled in summer and winter of 2007 and 2008. The epibacterial community composition was analysed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene libraries. Epibacterial community profiles did not only differ significantly at each sampling interval among algal species, but also showed consistent seasonal differences on each algal species at a bacterial phylum level. These compositional patterns re-occurred at the same season of two consecutive years. Within replicates of the same algal species, the composition of bacterial phyla was subject to shifts at the bacterial species level, both within the same season but at different years and between different seasons. However, 7-16% of sequences were identified as species specific to the host alga. These findings demonstrate that marine macroalgae harbour species-specific and temporally adapted epiphytic bacterial biofilms on their surfaces. Since several algal host-specific bacteria were highly similar to other bacteria known to either avoid subsequent colonization by eukaryotic larvae or to exhibit potent antibacterial activities, algal host-specific bacterial associations are expected to play an important role for marine macroalgae.


Applied and Environmental Microbiology | 2009

Rhizobium sp. Strain NGR234 Possesses a Remarkable Number of Secretion Systems

Christel Schmeisser; Heiko Liesegang; Dagmar Krysciak; Nadia Bakkou; Antoine Le Quéré; Antje Wollherr; Isabelle Heinemeyer; Burkhard Morgenstern; Andreas Pommerening-Röser; Margarita Flores; Rafael Palacios; Sydney Brenner; Gerhard Gottschalk; Ruth A. Schmitz; William J. Broughton; Xavier Perret; Axel Strittmatter; Wolfgang R. Streit

ABSTRACT Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.


PLOS ONE | 2013

Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy

Harald Schunck; Gaute Lavik; Dhwani K. Desai; Tobias Großkopf; Tim Kalvelage; Carolin Löscher; Aurélien Paulmier; Sergio Contreras; Herbert Siegel; Moritz Holtappels; Philip Rosenstiel; Markus Schilhabel; Michelle Graco; Ruth A. Schmitz; Marcel M. M. Kuypers; Julie LaRoche

In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ∼2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.


The ISME Journal | 2014

Facets of diazotrophy in the oxygen minimum zone waters off Peru

Carolin R Loescher; Tobias Großkopf; Falguni Desai; Diana Gill; Harald Schunck; Peter Croot; Christian Schlosser; Sven C. Neulinger; Nicole Pinnow; Gaute Lavik; Marcel M. M. Kuypers; Julie LaRoche; Ruth A. Schmitz

Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.


PLOS ONE | 2015

Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

Tim Kalvelage; Gaute Lavik; Marlene Mark Jensen; Niels Peter Revsbech; Carolin Löscher; Harald Schunck; Dhwani K. Desai; Helena Hauss; Rainer Kiko; Moritz Holtappels; Julie LaRoche; Ruth A. Schmitz; Michelle Graco; Marcel M. M. Kuypers

Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100%) in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.


Molecular Microbiology | 2005

Unique mechanistic features of post‐translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Gö1 in response to nitrogen availability

Claudia Ehlers; Katrin Weidenbach; Katharina Veit; Karl Forchhammer; Ruth A. Schmitz

PII‐like signal transduction proteins are found in all three domains of life and have been shown to play key roles in the control of bacterial nitrogen assimilation. This communication reports the first target protein of an archaeal PII‐like protein, representing a novel PII receptor. The GlnK1 protein of the methanogenic archaeon Methanosarcina mazei strain Gö1 interacts and forms stable complexes with glutamine synthetase (GlnA1). Complex formation with GlnK1 in the absence of metabolites inhibits the activity of GlnA1. On the other hand, the activity of this enzyme is directly stimulated by the effector molecule 2‐oxoglutarate. Moreover, 2‐oxoglutarate antagonized the inhibitory effects of GlnK1 on GlnA1 activity but did not prevent GlnK1/GlnA1 complex formation. On the basis of these findings, we hypothesize that besides the dominant effector molecule 2‐oxoglutarate, the nitrogen sensor GlnK1 allows finetuning control of the glutamine synthetase activity under changing nitrogen availabilities and propose the following model. (i) Under nitrogen limitation, increasing concentrations of 2‐oxoglutarate stimulate maximal GlnA1 activity and transform GlnA1 into an activated conformation, which prevents inhibition by GlnK1. (ii) Upon a shift to nitrogen sufficiency after a period of nitrogen limitation, GlnA1 activity is reduced by decreasing internal 2‐oxoglutarate concentrations through diminished direct activation and by GlnK1 inhibition.

Collaboration


Dive into the Ruth A. Schmitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge