Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie M. Clarke is active.

Publication


Featured researches published by Julie M. Clarke.


Nature | 2013

Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells

Yukihiro Furusawa; Yuuki Obata; Shinji Fukuda; Takaho A. Endo; Gaku Nakato; Daisuke Takahashi; Yumiko Nakanishi; Chikako Uetake; Keiko Kato; Tamotsu Kato; Masumi Takahashi; Noriko N. Fukuda; Shinnosuke Murakami; Eiji Miyauchi; Shingo Hino; Koji Atarashi; Satoshi Onawa; Yumiko Fujimura; Trevor Lockett; Julie M. Clarke; David L. Topping; Masaru Tomita; Shohei Hori; Osamu Ohara; Tatsuya Morita; Haruhiko Koseki; Jun Kikuchi; Kenya Honda; Koji Hase; Hiroshi Ohno

Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4+ CD45RBhi T cells in Rag1−/− mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host–microbe interactions establish immunological homeostasis in the gut.


Nature | 2011

Bifidobacteria can protect from enteropathogenic infection through production of acetate

Shinji Fukuda; Hidehiro Toh; Koji Hase; Kenshiro Oshima; Yumiko Nakanishi; Kazutoshi Yoshimura; Toru Tobe; Julie M. Clarke; David L. Topping; Tohru Suzuki; Todd D. Taylor; Kikuji Itoh; Jun Kikuchi; Hidetoshi Morita; Masahira Hattori; Hiroshi Ohno

The human gut is colonized with a wide variety of microorganisms, including species, such as those belonging to the bacterial genus Bifidobacterium, that have beneficial effects on human physiology and pathology. Among the most distinctive benefits of bifidobacteria are modulation of host defence responses and protection against infectious diseases. Nevertheless, the molecular mechanisms underlying these effects have barely been elucidated. To investigate these mechanisms, we used mice associated with certain bifidobacterial strains and a simplified model of lethal infection with enterohaemorrhagic Escherichia coli O157:H7, together with an integrated ‘omics’ approach. Here we show that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting mice against death induced by E. coli O157:H7. We found that this effect can be attributed, at least in part, to increased production of acetate and that translocation of the E. coli O157:H7 Shiga toxin from the gut lumen to the blood was inhibited. We propose that acetate produced by protective bifidobacteria improves intestinal defence mediated by epithelial cells and thereby protects the host against lethal infection.


Nature Immunology | 2017

Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes

Eliana Mariño; James L Richards; Keiran H McLeod; Dragana Stanley; Yu Anne Yap; Jacinta Knight; Craig McKenzie; Jan Kranich; Ana Carolina Oliveira; Fernando J. Rossello; Balasubramanian Krishnamurthy; Christian M. Nefzger; Laurence Macia; Alison N. Thorburn; Alan G. Baxter; Grant Morahan; Lee H. Wong; Jose M. Polo; Robert J. Moore; Trevor Lockett; Julie M. Clarke; David L. Topping; Leonard C. Harrison; Charles R. Mackay

Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell–dependent autoimmune diseases.


Journal of Nutrition | 2012

Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet

Michael A. Conlon; Caroline A Kerr; Christopher S. McSweeney; Robert Dunne; Janet M. Shaw; Seungha Kang; Anthony R. Bird; Matthew K. Morell; Trevor Lockett; Peter L. Molloy; Ahmed Regina; Shusuke Toden; Julie M. Clarke; David L. Topping

Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) generated by RNA interference] for 11 wk (n = 10/group). A control diet included 7% fat, 13% protein, and LAMS. Colonocyte DNA single-strand breaks (SSB) were significantly higher (by 70%) in rats fed the Western diet containing LAMS relative to controls. Dietary HAW, HAMS, and HAMSB opposed this effect while raising digesta levels of SCFA and lowering ammonia and phenol levels. SSB correlated inversely with total large bowel SCFA, including colonic butyrate concentration (R2 = 0.40; P = 0.009), and positively with colonic ammonia concentration (R2 = 0.40; P = 0.014). Analysis of gut microbiota populations using a phylogenetic microarray revealed profiles that fell into 3 distinct groups: control and LAMS; HAMS and HAMSB; and LAW and HAW. The expression of colonic genes associated with the maintenance of genomic integrity (notably Mdm2, Top1, Msh3, Ung, Rere, Cebpa, Gmnn, and Parg) was altered and varied with RS source. HAW is as effective as HAMS and HAMSB in opposing diet-induced colonic DNA damage in rats, but their effects on the large bowel microbiota and colonocyte gene expression differ, possibly due to the presence of other fiber components in HAW.


Carcinogenesis | 2008

Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats

Julie M. Clarke; David L. Topping; Anthony R. Bird; Graeme P. Young; Lynne Cobiac

Colorectal cancer (CRC) is a major cause of death worldwide. Studies suggest that dietary fibre offers protection perhaps by increasing colonic fermentative production of butyrate. This study examined the importance of butyrate by investigating the effects of resistant starch (RS) and butyrylated-RS on azoxymethane (AOM)-induced CRC in rats. Four groups (n = 30 per group) of Sprague–Dawley rats were fed AIN-93G-based diets containing a standard low-RS maize starch (LAMS), LAMS + 3% tributyrin (LAMST), 10% high-amylose maize starch (HAMS) and 10% butyrylated HAMS (HAMSB) for 4 weeks. Rats were injected once weekly for 2 weeks with 15 mg/kg AOM, maintained on diets for 25 weeks and then killed. Butyrate concentrations in large bowel digesta were higher in rats fed HAMSB than other groups (P < 0.001); levels were similar in HAMS, LAMS and LAMST groups. The proportion of rats developing tumours were lower in HAMS and HAMSB than LAMS (P < 0.05), and the number of tumours per rat were lower in HAMSB than LAMS (P < 0.05). Caecal digesta butyrate pools and concentrations were negatively correlated with tumour size (P < 0.05). Hepatic portal plasma butyrate concentrations were higher (P < 0.001) in the HAMSB compared with other groups and negatively correlated with tumour number per rat (P < 0.009) and total tumour size for each rat (P = 0.05). HAMSB results in higher luminal butyrate than RS alone or tributyrin. This is associated with reduced tumour incidence, number and size in this rat model of CRC supporting the important protective role of butyrate. Interventional strategies designed to maximize luminal butyrate may be of protective benefit in humans.


British Journal of Nutrition | 1993

Plasma lipids and large bowel volatile fatty acids in pigs fed on white rice, brown rice and rice bran

Yustinus Marsono; Richard J. Illman; Julie M. Clarke; Rodney P. Trimble; David L. Topping

Adult male pigs were fed on a diet containing (% of energy) fat 25 starch 55 from white rice and providing 20 g fibre/pig d (diet WR). In two other groups rice bran was added to the diet to provide 43 g fibre/d. One group received the diet unmodified (diet RB), but in another (diet RO) heat-stabilized unrefined rice oil replaced the palm oil. In a further group brown rice replaced white rice and provided 37 g fibre/pig per d (diet BR). Plasma cholesterol concentrations were similar with diets WR, RB and BR. With diet RO the concentration was significantly lower than with diets WR and BR but was not different from diet RB. Plasma high-density-lipoprotein-cholesterol and plasma triacylglycerols were unaffected by diet. In all groups, digesta mass rose from the caecum to the proximal colon but fell in the distal colon. Diet WR gave the lowest digesta mass while diet BR gave a significantly higher mass along the large bowel length. RB- and RO-fed pigs had equal masses of digesta which were intermediate between BR- and WR-fed pigs at all sampling sites. Pools of individual and total volatile fatty acids (VFA) in the proximal large bowel were unaffected by diet. Pools of total and individual VFA in the median and distal colon were lowest with diets WR and RB and significantly higher with diet BR. In these regions of the colon pools of acetate in RO-fed pigs did not differ from those in the BR-fed group but were higher than in other groups. However, pools of propionate and butyrate with the RO diet were significantly lower than with diet BR and the same as with diets WR and RB. Portal venous VFA concentrations were unaffected by diet. The higher large bowel digesta masses and VFA with diet BR may reflect the escape of starch from the small intestine.


Carcinogenesis | 2012

Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats.

Julie M. Clarke; Graeme P. Young; David L. Topping; Anthony R. Bird; Lynne Cobiac; Benjamin L. Scherer; Jessica G. Winkler; T Lockett

Animal studies show that increasing large bowel butyrate concentration through ingestion of butyrylated or resistant starches opposes carcinogen-induced tumorigenesis, which is consistent with population data linking greater fiber consumption with lowered colorectal cancer (CRC) risk. Butyrate has been shown to regulate the apoptotic response to DNA damage. This study examined the impact of increasing large bowel butyrate concentration by dietary butyrylated starch on the colonic epithelium of rats treated with the genotoxic carcinogen azoxymethane (AOM). Four groups of 10 male rats were fed AIN-93G based-diets containing either low amylose maize starch (LAMS), LAMS with 3% tributyrin, 10% high amylose maize starch (HAMS) or 10% butyrylated HAMS (HAMSB). HAMS and HAMSB starches were cooked by heating in water. After 4 weeks, rats were injected once with AOM and killed 6 h later. Rates of apoptosis and proliferation were measured in colonic epithelium. Short-chain fatty acid concentrations in large bowel digesta and hepatic portal venous plasma were higher in HAMSB than all other groups. Apoptotic rates in the distal colon were increased by HAMSB and correlated with luminal butyrate concentrations but cellular proliferation rates were unaffected by diet. The increase in apoptosis was most marked in the base and proliferative zone of the crypt. Regulation of luminal butyrate using HAMSB increases the rates of apoptotic deletion of DNA-damaged colonocytes. We propose this pro-apoptotic function of butyrate plays a major role reducing tumour formation in the AOM-treated rat and that these data support a potential protective role of butyrate in CRC.


British Journal of Nutrition | 2006

Butyrylated starch is less susceptible to enzymic hydrolysis and increases large-bowel butyrate more than high-amylose maize starch in the rat

Balázs H. Bajka; David L. Topping; Lynne Cobiac; Julie M. Clarke

Large-bowel fermentation of resistant starch produces SCFA that are believed to be important in maintaining visceral function. High-amylose maize starch (HAMS) and acylated starches are sources of resistant starch and are an effective means of increasing colonic SCFA. Cooking increases digestibility of starches but its effects on the capacity of these starches to raise large-bowel SCFA are unknown. We have examined the effects of cooking of HAMS and butyrylated HAMS (HAMSB) on amylolysis in vitro and their capacity to raise caeco-colonic SCFA in rats. The starches were boiled in excess water and microwaved, followed by drying at 100 degrees C. Cooking increased in vitro glucose release for both starches but significantly less from HAMSB. Rat growth rates were unaffected when fed cooked resistant starch. Digesta pH was increased in the caecum and proximal colon of rats fed cooked HAMS. Distal colonic pH was highest in rats fed cooked HAMSB. Factorial analyses (2x2) of caecal SCFA pools showed significant differences between HAMS and HAMSB, and that cooking significantly lowered caecal butyrate pools. Portal venous butyrate concentrations were higher in both HAMSB groups than those fed HAMS. The data suggest that HAMSB is less susceptible to in vitro amylolysis than HAMS following cooking and delivers more butyrate to rat caecum than HAMS. This attribute may be useful in food applications for specific delivery of SCFA to the colon. Preparation of carbohydrates to simulate human food in animal experiments may be important to assess nutritional and physiological effects accurately.


Carcinogenesis | 2008

Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats

Balazs H. Bajka; Julie M. Clarke; Lynne Cobiac; David L. Topping

Dietary resistant starch (RS), as a high amylose maize starch (HAMS), prevents dietary protein-induced colonocyte genetic damage in rats, possibly through the short-chain fatty acid (SCFA) butyrate produced by large bowel bacterial RS fermentation. Increasing butyrate availability may improve colonic health and dietary high amylose maize butyrylated starch (HAMSB) is an effective method of achieving this goal. In this study, rats (n = 8 per group) were fed diets containing high levels (25%) of dietary protein as casein with 10 or 20% dietary HAMSB and HAMS. Colonocyte genetic damage was measured by the comet assay and was 2-fold higher in rats fed 25% protein than those fed 15% protein (P < 0.001). Concurrent feeding of 25% protein and either HAMS or HAMSB lowered genetic damage significantly relative to a low-RS high-protein control diet. The 20% HAMSB diet was twice as effective as 20% HAMS in opposing genetic damage. Large bowel digesta butyrate was significantly increased in rats fed 20% compared with 10% HAMS and in rats fed 20% compared with 10% HAMSB. The levels were significantly higher in the HAMSB groups relative to the HAMS groups. Hepatic portal venous SCFA were higher in rats fed HAMS and highest in those fed HAMSB. Caecal digesta ammonia was increased by HAMSB and correlated negatively with digesta pH. Ammonia is cytotoxic and lower digesta pH could lower its absorption, possibly contributing to lower genetic damage. Delivery of butyrate to the large bowel by HAMSB could reduce colorectal cancer risk by preventing diet-induced colonocyte genetic damage.


Nutrition Research | 2010

Butyrylated starch increases large bowel butyrate levels and lowers colonic smooth muscle contractility in rats

Balazs H. Bajka; Julie M. Clarke; David L. Topping; Lynne Cobiac; Mahinda Y. Abeywardena; Glen S. Patten

The short-chain fatty acids acetate, propionate, and butyrate are produced by colonic bacterial fermentation of carbohydrates. Butyrate is important in the regulation of the colonocyte cell cycle and gut motility and may also reduce the risk of large bowel cancer. We have shown that dietary butyrylated starch can deliver butyrate to the large bowel in a sustained manner. We hypothesized that ingestion of butyrylated starch increases large bowel butyrate levels and decreases colonic contractility. Groups of male Sprague-Dawley rats (n = 8) were fed AIN-93G-based diet containing a highly digestible low-amylose maize starch (LAMS) control or 5% or 10% butyrylated LAMS (LAMSB) for 10 days. We found that cecal but not colonic tissue weight as well as cecal and distal colonic digesta weights and fecal output were higher in LAMSB fed rats. Butyrylated LAMS lowered digesta pH throughout the large bowel. Cecal, proximal, and distal colonic butyrate pools and portal venous butyrate concentrations were higher in rats fed LAMSB. Electrically stimulated and receptor-dependent carbachol and prostaglandin E(2)-induced isotonic contractions were lower in isolated intact sections of proximal colon (P < .05) but not the terminal ileum after 10% LAMSB ingestion. These results demonstrated that elevation of butyrate levels in the large bowel of the rat correlated with reduction of contractile activity of the colonic musculature, which may assist in the reabsorption of water and minerals.

Collaboration


Dive into the Julie M. Clarke's collaboration.

Top Co-Authors

Avatar

David L. Topping

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Trevor Lockett

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Anthony R. Bird

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Lynne Cobiac

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Caroline A Kerr

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Conlon

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Richard Head

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Robert Dunne

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Benjamin L. Scherer

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge