Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trevor Lockett is active.

Publication


Featured researches published by Trevor Lockett.


Nature | 2013

Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells

Yukihiro Furusawa; Yuuki Obata; Shinji Fukuda; Takaho A. Endo; Gaku Nakato; Daisuke Takahashi; Yumiko Nakanishi; Chikako Uetake; Keiko Kato; Tamotsu Kato; Masumi Takahashi; Noriko N. Fukuda; Shinnosuke Murakami; Eiji Miyauchi; Shingo Hino; Koji Atarashi; Satoshi Onawa; Yumiko Fujimura; Trevor Lockett; Julie M. Clarke; David L. Topping; Masaru Tomita; Shohei Hori; Osamu Ohara; Tatsuya Morita; Haruhiko Koseki; Jun Kikuchi; Kenya Honda; Koji Hase; Hiroshi Ohno

Gut commensal microbes shape the mucosal immune system by regulating the differentiation and expansion of several types of T cell. Clostridia, a dominant class of commensal microbe, can induce colonic regulatory T (Treg) cells, which have a central role in the suppression of inflammatory and allergic responses. However, the molecular mechanisms by which commensal microbes induce colonic Treg cells have been unclear. Here we show that a large bowel microbial fermentation product, butyrate, induces the differentiation of colonic Treg cells in mice. A comparative NMR-based metabolome analysis suggests that the luminal concentrations of short-chain fatty acids positively correlates with the number of Treg cells in the colon. Among short-chain fatty acids, butyrate induced the differentiation of Treg cells in vitro and in vivo, and ameliorated the development of colitis induced by adoptive transfer of CD4+ CD45RBhi T cells in Rag1−/− mice. Treatment of naive T cells under the Treg-cell-polarizing conditions with butyrate enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus, suggesting a possible mechanism for how microbial-derived butyrate regulates the differentiation of Treg cells. Our findings provide new insight into the mechanisms by which host–microbe interactions establish immunological homeostasis in the gut.


Journal of Nutrigenetics and Nutrigenomics | 2011

Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice.

Michael Fenech; Ahmed El-Sohemy; Leah Cahill; Lynnette R. Ferguson; Tapaeru-Ariki C. French; E. Shyong Tai; John A. Milner; Woon-Puay Koh; Lin Xie; Michelle Zucker; Michael Buckley; Leah J. Cosgrove; Trevor Lockett; Kim Y. C. Fung; Richard Head

Nutrigenetics and nutrigenomics hold much promise for providing better nutritional advice to the public generally, genetic subgroups and individuals. Because nutrigenetics and nutrigenomics require a deep understanding of nutrition, genetics and biochemistry and ever new ‘omic’ technologies, it is often difficult, even for educated professionals, to appreciate their relevance to the practice of preventive approaches for optimising health, delaying onset of disease and diminishing its severity. This review discusses (i) the basic concepts, technical terms and technology involved in nutrigenetics and nutrigenomics; (ii) how this emerging knowledge can be applied to optimise health, prevent and treat diseases; (iii) how to read, understand and interpret nutrigenetic and nutrigenomic research results, and (iv) how this knowledge may potentially transform nutrition and dietetic practice, and the implications of such a transformation. This is in effect an up-to-date overview of the various aspects of nutrigenetics and nutrigenomics relevant to health practitioners who are seeking a better understanding of this new frontier in nutrition research and its potential application to dietetic practice.


Nature Immunology | 2017

Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes

Eliana Mariño; James L Richards; Keiran H McLeod; Dragana Stanley; Yu Anne Yap; Jacinta Knight; Craig McKenzie; Jan Kranich; Ana Carolina Oliveira; Fernando J. Rossello; Balasubramanian Krishnamurthy; Christian M. Nefzger; Laurence Macia; Alison N. Thorburn; Alan G. Baxter; Grant Morahan; Lee H. Wong; Jose M. Polo; Robert J. Moore; Trevor Lockett; Julie M. Clarke; David L. Topping; Leonard C. Harrison; Charles R. Mackay

Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell–dependent autoimmune diseases.


Journal of Nutrition | 2012

Resistant Starches Protect against Colonic DNA Damage and Alter Microbiota and Gene Expression in Rats Fed a Western Diet

Michael A. Conlon; Caroline A Kerr; Christopher S. McSweeney; Robert Dunne; Janet M. Shaw; Seungha Kang; Anthony R. Bird; Matthew K. Morell; Trevor Lockett; Peter L. Molloy; Ahmed Regina; Shusuke Toden; Julie M. Clarke; David L. Topping

Resistant starch (RS), fed as high amylose maize starch (HAMS) or butyrylated HAMS (HAMSB), opposes dietary protein-induced colonocyte DNA damage in rats. In this study, rats were fed Western-type diets moderate in fat (19%) and protein (20%) containing digestible starches [low amylose maize starch (LAMS) or low amylose whole wheat (LAW)] or RS [HAMS, HAMSB, or a whole high amylose wheat (HAW) generated by RNA interference] for 11 wk (n = 10/group). A control diet included 7% fat, 13% protein, and LAMS. Colonocyte DNA single-strand breaks (SSB) were significantly higher (by 70%) in rats fed the Western diet containing LAMS relative to controls. Dietary HAW, HAMS, and HAMSB opposed this effect while raising digesta levels of SCFA and lowering ammonia and phenol levels. SSB correlated inversely with total large bowel SCFA, including colonic butyrate concentration (R2 = 0.40; P = 0.009), and positively with colonic ammonia concentration (R2 = 0.40; P = 0.014). Analysis of gut microbiota populations using a phylogenetic microarray revealed profiles that fell into 3 distinct groups: control and LAMS; HAMS and HAMSB; and LAW and HAW. The expression of colonic genes associated with the maintenance of genomic integrity (notably Mdm2, Top1, Msh3, Ung, Rere, Cebpa, Gmnn, and Parg) was altered and varied with RS source. HAW is as effective as HAMS and HAMSB in opposing diet-induced colonic DNA damage in rats, but their effects on the large bowel microbiota and colonocyte gene expression differ, possibly due to the presence of other fiber components in HAW.


BMC Cancer | 2014

A panel of genes methylated with high frequency in colorectal cancer

Susan Margaret Mitchell; Jason P. Ross; Horace R. Drew; Thu Ho; Glenn Brown; Neil F. W. Saunders; Konsta Duesing; Michael Buckley; Robert Dunne; Iain Beetson; Keith N. Rand; Aidan McEvoy; Melissa K. Thomas; Rohan Baker; David Wattchow; Graeme P. Young; Trevor Lockett; Susanne K. Pedersen; Peter L. Molloy

BackgroundThe development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests.MethodsCombined epigenomic methods – activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment – were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP).ResultsCombined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas.ConclusionsThis study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes (SOX21, SLC6A15, NPY, GRASP, ST8SIA1 and ZSCAN18) show very low methylation in non-neoplastic colorectal tissue and are candidate biomarkers for stool-based assays, while 11 genes (BCAT1, COL4A2, DLX5, FGF5, FOXF1, FOXI2, GRASP, IKZF1, IRF4, SDC2 and SOX21) have very low methylation in peripheral blood DNA and are suitable for further evaluation as blood-based diagnostic markers.


Journal of Gastroenterology and Hepatology | 2015

Association between specific mucosa‐associated microbiota in Crohn's disease at the time of resection and subsequent disease recurrence: A pilot study

Peter De Cruz; Seungha Kang; Josef Wagner; Michael Buckley; Winnie H. Sim; Lani Prideaux; Trevor Lockett; Chris McSweeney; Mark Morrison; Carl D. Kirkwood; Michael A. Kamm

Crohns disease pathogenesis involves alterations in the gut microbiota. We characterized the mucosa‐associated microbiota at the time of surgical resection and 6 months later to identify bacterial profiles associated with recurrence and remission.


Journal of Proteome Research | 2011

Butyrate-Induced Apoptosis in HCT116 Colorectal Cancer Cells Includes Induction of a Cell Stress Response

Kim Y. C. Fung; Gemma V. Brierley; Steve Henderson; Peter Hoffmann; Trevor Lockett; Richard Head; Leah J. Cosgrove

Short chain fatty acids (SCFA), principally butyrate, propionate, and acetate, are produced in the gut through the fermentation of dietary fiber by the colonic microbiotica. Butyrate in particular is the preferred energy source for the cells in the colonic mucosa and has been demonstrated to induce apoptosis in colorectal cancer cell lines. We have used proteomics, specifically 2D-DIGE and mass spectrometry, to identify proteins involved in butyrate-induced apoptosis in HCT116 cells and also to identify proteins involved in the development of butyrate insensitivity in its derivative, the HCT116-BR cells. The HCT116-BR cell line was characterized as being less responsive to the apoptotic effects of butyrate in comparison to its parent cell line. Our analysis has revealed that butyrate likely induces a cellular stress response in HCT116 cells characterized by p38 MAPK activation and an endoplasmic reticulum (ER) stress response, resulting in caspase 3/7 activation and cell death. Adaptive cellular responses to stress-induced apoptosis in HCT116-BR cells may be responsible for the development of resistance to apoptosis in this cell line. We also report for the first time additional cellular processes altered by butyrate, such as heme biosynthesis and dysregulated expression of nuclear lamina proteins, which may be involved in the apoptotic response observed in these cell lines.


Biochimica et Biophysica Acta | 1999

A transfection compound series based on a versatile Tris linkage

Fiona Helen Cameron; Minoo J. Moghaddam; Vera J. Bender; Robert George Whittaker; Margaret R. Mott; Trevor Lockett

The family of cationic lipid transfection reagents described here demonstrates a modular design that offers potential for the ready synthesis of a wide variety of molecular variants. The key feature of these new molecules is the use of Tris as a linker for joining the hydrophobic domain to a cationic head group. The molecular design offers the opportunity to conveniently synthesise compounds differing in charge, the number and nature of hydrophobic groups in the hydrophobic domain and the characteristics of the spacer between the cationic and hydrophobic moieties. We show that prototype reagents of this design can deliver reporter genes into cultured cells with efficiencies rivaling those of established cationic lipid transfection reagents. A feature of these reagents is that they are not dependent on formulation with a neutral lipid for activity.


Inflammatory Bowel Diseases | 2013

Impact of ethnicity, geography, and disease on the microbiota in health and inflammatory bowel disease.

Lani Prideaux; Seungha Kang; Josef Wagner; Michael Buckley; Jackie E. Mahar; De Cruz P; Zezhang Wen; Liping Chen; Bing Xia; van Langenberg Dr; Trevor Lockett; Siew C. Ng; Joseph J.Y. Sung; Paul V. Desmond; Christopher S. McSweeney; Mark Morrison; Carl D. Kirkwood; Michael A. Kamm

Background:The gut microbiota is central to health and disorders such as inflammatory bowel disease. Differences in microbiota related to geography and ethnicity may hold the key to recent changes in the incidence of microbiota-related disorders. Methods:Gut mucosal microbiota was analyzed in 190 samples from 87 Caucasian and Chinese subjects, from Australia and Hong Kong, comprising 22 patients with Crohns disease, 30 patients with ulcerative colitis, 29 healthy controls, and 6 healthy relatives of patients with Crohns disease. Bacterial 16S rRNA microarray and 454 pyrosequencing were performed. Results:The microbiota was diverse in health, regardless of ethnicity or geography (operational taxonomic unit number and Shannon diversity index). Ethnicity and geography, however, did affect microbial composition. Crohns disease resulted in reduced bacterial diversity, regardless of ethnicity or geography, and was the strongest determinant of composition. In ulcerative colitis, diversity was reduced in Chinese subjects only, suggesting that ethnicity is a determinant of bacterial diversity, whereas composition was determined by disease and ethnicity. Specific phylotypes were different between health and disease. Chinese patients with inflammatory bowel disease more often than healthy Chinese tended to have had a Western diet in childhood, in the East and West. Conclusion:The healthy microbiota is diverse but compositionally affected by geographical and ethnic factors. The microbiota is substantially altered in inflammatory bowel disease, but ethnicity may also play an important role. This may be key to the changing epidemiology in developing countries, and emigrants to the West.


PLOS ONE | 2015

Blood-Based Protein Biomarker Panel for the Detection of Colorectal Cancer

Kim Y. C. Fung; Bruce Tabor; Michael Buckley; Ilka Priebe; Leanne Purins; Celine Pompeia; Gemma V. Brierley; Trevor Lockett; Peter Gibbs; Jeanne Tie; Paul McMurrick; James Moore; Andrew Ruszkiewicz; Edouard C. Nice; Timothy E. Adams; Antony W. Burgess; Leah J. Cosgrove

Background The majority of colorectal cancer (CRC) cases are preventable by early detection and removal of precancerous polyps. Even though CRC is the second most common internal cancer in Australia, only 30 per cent of the population considered to have risk factors participate in stool-based test screening programs. Evidence indicates a robust, blood-based, diagnostic assay would increase screening compliance. A number of potential diagnostic blood-based protein biomarkers for CRC have been reported, but all lack sensitivity or specificity for use as a stand-alone diagnostic. The aim of this study was to identify and validate a panel of protein-based biomarkers in independent cohorts that could be translated to a reliable, non-invasive blood-based screening test. Principal Findings In two independent cohorts (n = 145 and n = 197), we evaluated seven single biomarkers in serum of CRC patients and age/gender matched controls that showed a significant difference between controls and CRC, but individually lack the sensitivity for diagnostic application. Using logistic regression strategies, we identified a panel of three biomarkers that discriminated between controls and CRC with 73% sensitivity at 95% specificity, when applied to either of the two cohorts. This panel comprised of Insulin like growth factor binding protein 2 (IGFBP2), Dickkopf-3 (DKK3), and Pyruvate kinase M2(PKM2). Conclusions Due to the heterogeneous nature of CRC, a single biomarker is unlikely to have sufficient sensitivity or specificity for use as a stand-alone diagnostic screening test and a panel of markers may be more effective. We have identified a 3 biomarker panel that has higher sensitivity and specificity for early stage (Stage I and -II) disease than the faecal occult blood test, raising the possibility for its use as a non-invasive blood diagnostic or screening test.

Collaboration


Dive into the Trevor Lockett's collaboration.

Top Co-Authors

Avatar

Leah J. Cosgrove

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Richard Head

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Kim Y. C. Fung

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie M. Clarke

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Peter L. Molloy

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ilka Priebe

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

David L. Topping

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Philip Hendry

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Bruce Tabor

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge