Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Moulin is active.

Publication


Featured researches published by Julie Moulin.


Obesity | 2007

Effect of a Thermogenic Beverage on 24-Hour Energy Metabolism in Humans

Servane Rudelle; Mario G. Ferruzzi; Isabelle Cristiani; Julie Moulin; Katherine Macé; Kevin J. Acheson; Luc Tappy

Objective: To test whether consumption of a beverage containing active ingredients will increase 24‐hour energy metabolism in healthy, young, lean individuals.


Molecular Nutrition & Food Research | 2009

Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism.

Mathieu Renouf; Philippe A. Guy; Cynthia Marmet; Anne-Lise Fraering; Karin Longet; Julie Moulin; Marc Enslen; Denis Barron; Fabiola Dionisi; Christophe Cavin; Gary Williamson; Heike Steiling

Previous studies on coffee examined absorption of phenolic acids (PA) in the small intestine, but not the contribution of the colon to absorption. Nine healthy volunteers ingested instant soluble coffee ( approximately 335 mg total chlorogenic acids (CGAs)) in water. Blood samples were taken over 12 h, and at 24 h to assess return to baseline. Many previous studies, which used glucuronidase and sulfatase, measured only PA and did not rigorously assess CGAs. To improve this, plasma samples were analyzed after full hydrolysis by chlorogenate esterase, glucuronidase and sulfatase to release aglycone equivalents of PA followed by liquid-liquid extraction and ESI-LC-ESI-MS/MS detection. Ferulic, caffeic and isoferulic acid equivalents appeared rapidly in plasma, peaking at 1-2 h. Dihydrocaffeic and dihydroferulic acids appeared in plasma 6-8 h after ingestion (T(max=)8-12 h). Substantial variability in maximum plasma concentration and T(max) was also observed between individuals. This study confirms that the small intestine is a significant site for absorption of PA, but shows for the first time that the colon/microflora play the major role in absorption and metabolism of CGAs and PA from coffee.


International Journal of Food Microbiology | 2009

Impact of coffee consumption on the gut microbiota: a human volunteer study.

Muriel Jaquet; Isabelle Rochat; Julie Moulin; Christophe Cavin; Rodrigo Bibiloni

The impact of a moderate consumption of an instant coffee on the general composition of the human intestinal bacterial population was assessed in this study. Sixteen (16) healthy adult volunteers consumed a daily dose of 3 cups of coffee during 3 weeks. Faecal samples were collected before and after the consumption of coffee, and the impact of the ingestion of the product on the intestinal bacteria as well as the quantification of specific bacterial groups was assessed using nucleic acid-based methods. Although faecal profiles of the dominant microbiota were not significantly affected after the consumption of the coffee (Dices similarity index=92%, n=16), the population of Bifidobacterium spp. increased after the 3-week test period (P=0.02). Moreover, in some subjects, there was a specific increase in the metabolic activity of Bifidobacterium spp. Our results show that the consumption of the coffee preparation resulting from water co-extraction of green and roasted coffee beans produce an increase in the metabolic activity and/or numbers of the Bifidobacterium spp. population, a bacterial group of reputed beneficial effects, without major impact on the dominant microbiota.


Clinical & Experimental Allergy | 2011

Effect of Lactobacillus paracasei ST11 on a nasal provocation test with grass pollen in allergic rhinitis

J. Wassenberg; Sophie Nutten; R. Audran; N. Barbier; V. Aubert; Julie Moulin; Annick Mercenier; François Spertini

Cite this as: J. Wassenberg, S. Nutten, R. Audran, N. Barbier, V. Aubert, J. Moulin, A. Mercenier and F. Spertini, Clinical & Experimental Allergy, 2011 (41) 565–573.


Journal of Nutrition | 2010

Nondairy Creamer, but Not Milk, Delays the Appearance of Coffee Phenolic Acid Equivalents in Human Plasma

Mathieu Renouf; Cynthia Marmet; Philippe A. Guy; Anne-Lise Fraering; Karin Longet; Julie Moulin; Marc Enslen; Denis Barron; Christophe Cavin; Fabiola Dionisi; Serge Rezzi; Sunil Kochhar; Heike Steiling; Gary Williamson

Chlorogenic acids (CGA) are antioxidants found in coffee. They are becoming of interest for their health-promoting effects, but bioavailability in humans is not well understood. We hypothesized that adding whole milk or sugar and nondairy creamer to instant coffee might modulate the bioavailability of coffee phenolics. Nine healthy participants were asked to randomly drink, in a crossover design, instant coffee (Coffee); instant coffee and 10% whole milk (Milk); or instant coffee, sugar, and nondairy creamer already premixed (Sugar/NDC). All 3 treatments provided the same amount of total CGA (332 mg). Blood was collected for 12 h after ingestion and plasma samples treated using a liquid-liquid extraction method that included a full enzymatic cleavage to hydrolyze all CGA and conjugates into phenolic acid equivalents. Hence, we focused our liquid chromatography-Electrospray ionization-tandem MS detection and quantification on caffeic acid (CA), ferulic acid (FA), and isoferulic acid (iFA) equivalents. Compared with a regular black instant coffee, the addition of milk did not significantly alter the area under the curve (AUC), maximum plasma concentration (C(max)), or the time needed to reach C(max) (T(max)). The C(max) of CA and iFA were significantly lower and the T(max) of FA and iFA significantly longer for the Sugar/NDC group than for the Coffee group. However, the AUC did not significantly differ. As a conclusion, adding whole milk did not alter the overall bioavailability of coffee phenolic acids, whereas sugar and nondairy creamer affected the T(max) and C(max) but not the appearance of coffee phenolics in plasma.


British Journal of Nutrition | 2010

Plasma appearance and correlation between coffee and green tea metabolites in human subjects

Mathieu Renouf; Philippe A. Guy; Cynthia Marmet; Karin Longet; Anne-Lise Fraering; Julie Moulin; Denis Barron; Fabiola Dionisi; Christophe Cavin; Heike Steiling; Gary Williamson

Coffee and green tea are two of the most widely consumed hot beverages in the world. Their respective bioavailability has been studied separately, but absorption of their respective bioactive phenolics has not been compared. In a randomised cross-over design, nine healthy subjects drank instant coffee and green tea. Blood samples were collected over 12 h and at 24 h to assess return to baseline. After green tea consumption, (-)-epigallocatechin (EGC) was the major catechin, appearing rapidly in the plasma; (-)-EGC gallate (EGCg) and (-)-epicatechin (EC) were also present, but (-)-EC gallate and C were not detected. Dihydroferulic acid and dihydrocaffeic acid were the major metabolites that appeared after coffee consumption with a long time needed to reach maximum plasma concentration, suggesting metabolism and absorption in the colon. Other phenolic acid equivalents (caffeic acid (CA), ferulic acid (FA) and isoferulic acid (iFA)) were detected earlier, and they peaked at lower concentrations. Summations of the plasma area under the curves (AUC) for the measured metabolites showed 1.7-fold more coffee-derived phenolic acids than green tea-derived catechins (P = 0.0014). Furthermore, we found a significant correlation between coffee metabolites based on AUC. Inter-individual differences were observed, but individuals with a high level of CA also showed a correspondingly high level of FA. However, no such correlation was observed between the tea catechins and coffee phenolic acids. Correlation between AUC and maximum plasma concentration was also significant for CA, FA and iFA and for EGCg. This implies that the mechanisms of absorption for these two classes of compounds are different, and that a high absorber of phenolic acids is not necessarily a high absorber of catechins.


Planta Medica | 2010

Rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and liver steatosis in mice fed a high-fat diet.

Taoufiq Harach; Olivier Aprikian; Irina Monnard; Julie Moulin; Mathieu Membrez; Jean-Claude Béolor; Thomas Raab; Katherine Macé; Christian Darimont

The objective of this study was to investigate the effects of rosemary (Rosmarinus officinalis L.) leaf extract (RE) on the prevention of weight gain and associated metabolic disorders in mice fed a high-fat diet. For this purpose, RE was administered for 50 days at 20 or 200 mg/kg body weight (BW) to mice fed a high-fat diet. Body weight was monitored during the study and body composition was measured before and at the end of the intervention. Glucose tolerance, assessed by an intraperitoneal glucose tolerance test (IPGTT), and hepatic and faecal lipid contents were determined at the end of the study. Treatment with 200 mg/kg BW of RE induced a significant reduction of weight and fat mass gain (-64% and -57%, respectively) associated with an increase of faecal lipid excretion. This effect appears to be related to the inhibition of pancreatic lipase activity induced by RE, as demonstrated IN VITRO. While glucose tolerance and fasting glycaemia were not affected by RE treatment, hepatic triglyceride levels were decreased by 39% in RE-treated mice. Administration of the lower dose of RE (20 mg/kg BW) was ineffective on all the parameters measured. In conclusion, our results demonstrate that consumption of 200 mg/kg BW of RE can limit weight gain induced by a high-fat diet and protect against obesity-related liver steatosis.


Bioinformatics | 2004

The Global Error Assessment (GEA) model for the selection of differentially expressed genes in microarray data

Robert Mansourian; David M. Mutch; Nicolas Antille; Jérôme Aubert; Paul Fogel; Jean-Marc Le Goff; Julie Moulin; Anton Petrov; Andreas Rytz; Johannes J. Voegel; Matthew-Alan Roberts

MOTIVATION Microarray technology has become a powerful research tool in many fields of study; however, the cost of microarrays often results in the use of a low number of replicates (k). Under circumstances where k is low, it becomes difficult to perform standard statistical tests to extract the most biologically significant experimental results. Other more advanced statistical tests have been developed; however, their use and interpretation often remain difficult to implement in routine biological research. The present work outlines a method that achieves sufficient statistical power for selecting differentially expressed genes under conditions of low k, while remaining as an intuitive and computationally efficient procedure. RESULTS The present study describes a Global Error Assessment (GEA) methodology to select differentially expressed genes in microarray datasets, and was developed using an in vitro experiment that compared control and interferon-gamma treated skin cells. In this experiment, up to nine replicates were used to confidently estimate error, thereby enabling methods of different statistical power to be compared. Gene expression results of a similar absolute expression are binned, so as to enable a highly accurate local estimate of the mean squared error within conditions. The model then relates variability of gene expression in each bin to absolute expression levels and uses this in a test derived from the classical ANOVA. The GEA selection method is compared with both the classical and permutational ANOVA tests, and demonstrates an increased stability, robustness and confidence in gene selection. A subset of the selected genes were validated by real-time reverse transcription-polymerase chain reaction (RT-PCR). All these results suggest that GEA methodology is (i) suitable for selection of differentially expressed genes in microarray data, (ii) intuitive and computationally efficient and (iii) especially advantageous under conditions of low k. AVAILABILITY The GEA code for R software is freely available upon request to authors.


British Journal of Nutrition | 2009

Safety of supplementing infant formula with long-chain polyunsaturated fatty acids and Bifidobacterium lactis in term infants: a randomised controlled trial

Robert A. Gibson; Denis Barclay; Helen Marshall; Julie Moulin; Jean-Claude Maire; Maria Makrides

Probiotics and long-chain PUFA (LC-PUFA) may be beneficial supplements for infants who are not breast-fed. The aim of the present study is to evaluate the safety of an infant formula containing the LC-PUFA DHA and arachidonic acid (AA) and the probiotic Bifidobacterium lactis by comparing the growth rate of infants fed the supplemented and unsupplemented formulas. One hundred and forty-two healthy, term infants were enrolled in a single-centre, randomised, double-blind, controlled, parallel-group trial, and allocated to receive either standard or probiotic and LC-PUFA-containing experimental formulas. The infants were fed with their assigned formulas for 7 months. The primary outcome (weight gain) and the secondary outcomes (length, head circumference and formula tolerance) were measured throughout the study. LC-PUFA status was assessed at 4 months of age and immune response to childhood vaccines was measured at 7 months of age. There was no significant difference in growth between the two groups. The 90 % CI for the difference in mean weight gain was - 0.08, 3.1 g in the intention-to-treat population and 0.1-3.8 g in the per protocol population, which lay within the predefined boundaries of equivalence, - 3.9-3.9. There were no significant differences in mean length and head circumference. DHA and AA concentrations were higher in infants in the experimental formula group compared with the control formula group. No influence of the supplements on the response to vaccines was observed. Growth characteristics of term infants fed the starter formula containing a probiotic and LC-PUFA were similar to standard formula-fed infants.


Nutrients | 2012

Benefits of Structured and Free Monoacylglycerols to Deliver Eicosapentaenoic (EPA) in a Model of Lipid Malabsorption

Cristina Cruz-Hernandez; Sagar Thakkar; Julie Moulin; Manuel Oliveira; Isabelle Masserey-Elmelegy; Fabiola Dionisi; Frédéric Destaillats

In the present study, we used a preclinical model of induced lipolytic enzyme insufficiency, and hypothesized that the use of monoacylglycerols (MAG) will enhance their bioavailability and delivery to the tissues. Experimental diets containing 20% lipids were fed to rats for 21 days with or without Orlistat. The control diet of fish oil (FO), a source of EPA and DHA, was tested against: structured (A) vanillin acetal of sn-2 MAG (Vanil + O) and (B) diacetyl derivative of sn-2 MAG (Acetyl + O) and (C) free MAG (MAG + O). FA profiles with an emphasis on EPA and DHA levels were determined in plasma, red blood cells (RBC), liver, spleen, brain and retina. We observed significant reduction of lipid absorption when rats co-consumed Orlistat. As expected, the FO groups with and without Orlistat showed the biggest difference. The Vanil + O, Acetyl + O and MAG + O groups, demonstrated higher levels of EPA (5.5 ± 1.9, 4.6 ± 1.6 and 5.6 ± 0.6, respectively) in RBC compared with FO + O diets (3.3 ± 0.2, 2.6 ± 0.2). Levels of EPA incorporation, in plasma, were similar to those obtained for RBC, and similar trends were observed for the collected tissues and even with DHA levels. These observations with two MAG derivatives providing the fatty acid esterified in the sn-2 position, show that these molecules are efficient vehicles of EPA in malabsorption conditions which is in line with our hypothesis. Free MAG, characterized as having exclusively sn-1(3) isomers of EPA, demonstrated better absorption efficiencies and accretion to tissues when compared to structured MAG. The study demonstrated that structured and free MAG can be used efficiently as an enteral vehicle to supply bioactive fatty acids such as EPA and DHA in lipid malabsorption where diminished lipolytic activity is the underlying cause.

Collaboration


Dive into the Julie Moulin's collaboration.

Researchain Logo
Decentralizing Knowledge