Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christophe Cavin is active.

Publication


Featured researches published by Christophe Cavin.


Food and Chemical Toxicology | 2002

Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity.

Christophe Cavin; D Holzhaeuser; Gerlinde Scharf; Anne Constable; Wolfgang W. Huber; B. Schilter

Epidemiological studies have found an inverse association between coffee consumption and the risk of certain types of cancers such as colorectal cancers. Animal data support such a chemopreventive effect of coffee. Substantial research has been devoted to the identification of coffee components that may be responsible for these beneficial effects. In animal models and cell culture systems, the coffee diterpenes cafestol and kahweol (C+K) were shown to produce a broad range of biochemical effects resulting in a reduction of the genotoxicity of several carcinogens including 7,12-dimethylbenz[a]anthracene (DMBA), aflatoxin B(1) (AFB(1)), benzo[a]pyrene (B[a]P) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Different mechanisms appear to be involved in these chemoprotective effects: an induction of conjugating enzymes (e.g. glutathione S-transferases, glucuronosyl S-transferases), an increased expression of proteins involved in cellular antioxidant defense (e.g. gamma-glutamyl cysteine synthetase and heme oxygenase-1) and an inhibition of the expression and/or activity of cytochromes P450 involved in carcinogen activation (e.g. CYP2C11, CYP3A2). In animal models, the C+K-mediated induction of conjugating and antioxidant enzymes has been observed in hepatic, intestinal and kidney tissues. In the small intestine, these inductions were shown to be mediated by Nrf2-dependent transcriptional activation. In vitro investigations obtained in cell cultures of human origin indicate that the effects and mechanisms observed in animal test systems with C+K are likely to be of relevance for humans. In human liver epithelial cell lines transfected to express AFB(1)-activating P450s, C+K treatment resulted in a reduction of AFB(1)-DNA binding. This protection was correlated with an induction of GST-mu, an enzyme known to be involved in AFB(1) detoxification. In addition, C+K was found to inhibit P450 2B6, one of the human enzymes responsible for AFB(1) activation. Altogether, the data on the biological effects of C+K provide a plausible hypothesis to explain some of the anticarcinogenic effects of coffee observed in human epidemiological studies and in animal experiments.


Drug Metabolism and Disposition | 2009

Metabolite Profiling of Hydroxycinnamate Derivatives in Plasma and Urine after the Ingestion of Coffee by Humans: Identification of Biomarkers of Coffee Consumption

Angelique Stalmach; William Mullen; Denis Barron; Kenichi Uchida; Takao Yokota; Christophe Cavin; Heike Steiling; Gary Williamson; Alan Crozier

Human subjects drank coffee containing 412 μmol of chlorogenic acids, and plasma and urine were collected 0 to 24 h after ingestion and were analyzed by high-performance liquid chromatography-mass spectrometry. Within 1 h, some of the components in the coffee reached nanomole peak plasma concentrations (Cmax), whereas chlorogenic acid metabolites, including caffeic acid-3-O-sulfate and ferulic acid-4-O-sulfate and sulfates of 3- and 4-caffeoylquinic acid lactones, had higher Cmax values. The short time to reach Cmax (Tmax) indicates absorption of these compounds in the small intestine. In contrast, dihydroferulic acid, its 4-O-sulfate, and dihydrocaffeic acid-3-O-sulfate exhibited much higher Cmax values (145–385 nM) with Tmax values in excess of 4 h, indicating absorption in the large intestine and the probable involvement of catabolism by colonic bacteria. These three compounds, along with ferulic acid-4-O-sulfate and dihydroferulic acid-4-O-glucuronide, were also major components to be excreted in urine (8.4–37.1 μmol) after coffee intake. Feruloylglycine, which is not detected in plasma, was also a major urinary component (20.7 μmol excreted). Other compounds, not accumulating in plasma but excreted in smaller quantities, included the 3-O-sulfate and 3-O-glucuronide of isoferulic acid, dihydro(iso)ferulic acid-3-O-glucuronide, and dihydrocaffeic acid-3-O-glucuronide. Overall, the 119.9 μmol excretion of the chlorogenic acid metabolites corresponded to 29.1% of intake, indicating that as well as being subject to extensive metabolism, chlorogenic acids in coffee are well absorbed. Pathways for the formation of the various metabolites within the body are proposed. Urinary dihydrocaffeic acid-3-O-sulfate and feruloylglycine are potentially very sensitive biomarkers for the consumption of relatively small amounts of coffee.


Molecular Nutrition & Food Research | 2009

Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: small intestine and colon are key sites for coffee metabolism.

Mathieu Renouf; Philippe A. Guy; Cynthia Marmet; Anne-Lise Fraering; Karin Longet; Julie Moulin; Marc Enslen; Denis Barron; Fabiola Dionisi; Christophe Cavin; Gary Williamson; Heike Steiling

Previous studies on coffee examined absorption of phenolic acids (PA) in the small intestine, but not the contribution of the colon to absorption. Nine healthy volunteers ingested instant soluble coffee ( approximately 335 mg total chlorogenic acids (CGAs)) in water. Blood samples were taken over 12 h, and at 24 h to assess return to baseline. Many previous studies, which used glucuronidase and sulfatase, measured only PA and did not rigorously assess CGAs. To improve this, plasma samples were analyzed after full hydrolysis by chlorogenate esterase, glucuronidase and sulfatase to release aglycone equivalents of PA followed by liquid-liquid extraction and ESI-LC-ESI-MS/MS detection. Ferulic, caffeic and isoferulic acid equivalents appeared rapidly in plasma, peaking at 1-2 h. Dihydrocaffeic and dihydroferulic acids appeared in plasma 6-8 h after ingestion (T(max=)8-12 h). Substantial variability in maximum plasma concentration and T(max) was also observed between individuals. This study confirms that the small intestine is a significant site for absorption of PA, but shows for the first time that the colon/microflora play the major role in absorption and metabolism of CGAs and PA from coffee.


Food and Chemical Toxicology | 2001

Protective effects of coffee diterpenes against aflatoxin B1-induced genotoxicity: mechanisms in rat and human cells

Christophe Cavin; K Mace; E.A Offord; Benoît Schilter

The coffee-specific diterpenes cafestol and kahweol (C + K) have been reported to be anticarcinogenic in several animal models. Proposed mechanisms involve a co-ordinated modulation of several enzymes responsible for carcinogen detoxification, thus preventing reactive agents interacting with critical target sites. To address the human relevance of the chemoprotective effects of C + K against aflatoxin B(1) (AFB1) genotoxicity observed in rat liver, and to compare the mechanisms of protection involved in both species, animal and human hepatic in vitro test systems were applied. In rat primary hepatocytes, C + K reduced the expression of cytochrome P450 CYP 2C11 and CYP 3A2, the key enzymes responsible for AFB1 activation to the genotoxic metabolite aflatoxin B1-8,9 epoxide (AFBO). In addition, these diterpenes induced significantly GST Yc2, the most efficient rat GST subunit involved in AFBO detoxification. These effects of C + K resulted in a marked dose-dependent inhibition of AFB1-DNA binding in this rat in vitro culture system. Their relevance in humans was addressed using liver epithelial cell lines (THLE) stably transfected to express AFB1 metabolising cytochrome P450s. In these cells, C + K also produced a significant inhibition of AFB1-DNA adducts formation linked with an induction of the human glutathione S-transferase GST-mu. Altogether, these results suggest that C + K may have chemoprotective activity against AFB1 genotoxicity in both rats and humans.


International Journal of Food Microbiology | 2009

Impact of coffee consumption on the gut microbiota: a human volunteer study.

Muriel Jaquet; Isabelle Rochat; Julie Moulin; Christophe Cavin; Rodrigo Bibiloni

The impact of a moderate consumption of an instant coffee on the general composition of the human intestinal bacterial population was assessed in this study. Sixteen (16) healthy adult volunteers consumed a daily dose of 3 cups of coffee during 3 weeks. Faecal samples were collected before and after the consumption of coffee, and the impact of the ingestion of the product on the intestinal bacteria as well as the quantification of specific bacterial groups was assessed using nucleic acid-based methods. Although faecal profiles of the dominant microbiota were not significantly affected after the consumption of the coffee (Dices similarity index=92%, n=16), the population of Bifidobacterium spp. increased after the 3-week test period (P=0.02). Moreover, in some subjects, there was a specific increase in the metabolic activity of Bifidobacterium spp. Our results show that the consumption of the coffee preparation resulting from water co-extraction of green and roasted coffee beans produce an increase in the metabolic activity and/or numbers of the Bifidobacterium spp. population, a bacterial group of reputed beneficial effects, without major impact on the dominant microbiota.


Toxicon | 2008

Ochratoxin A carcinogenicity involves a complex network of epigenetic mechanisms

Maricel Marin-Kuan; Christophe Cavin; Thierry Delatour; Benoît Schilter

Ochratoxin A (OTA) is a mycotoxin occurring in a wide range of food products. Because of the limitation of human epidemiological data, the safety significance of OTA in food has to rely on animal data, with renal toxicity and carcinogenicity being considered the pivotal effects. The elucidation of the mechanism of action would improve the use of experimental animal data for risk assessment. Direct genotoxicity versus epigenetic mechanisms appears to be a key question. In the present review, the increasingly documented epigenetic cellular effects of OTA and their potential toxicological relevance are discussed. The information available suggests that OTA is unlikely to act through a single, well-defined mechanism of action. Instead, it is proposed that a network of interacting epigenetic mechanisms, including protein synthesis inhibition, oxidative stress and the activation of specific cell signalling pathways, is responsible for OTA carcinogenicity. From a risk assessment perspective, it has to be noted that the mechanisms proposed above depend mainly upon gene expression and enzyme activation, and are, therefore, likely to be thresholded.


Nutrition and Cancer | 2004

Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and in their mode of action in human-derived liver (HepG2) cells: Implications for risk assessment

Siegfried Knasmüller; Christophe Cavin; Asima Chakraborty; F. Darroudi; Bernhard J. Majer; Wolfgang W. Huber; Veronika Ehrlich

Abstract: To elucidate the effects of three structurally related mycotoxins, namely, ochratoxin A (OTA), ochratoxin B (OTB), and citrinin (CIT), on human health, we investigated their acute toxic, mitogenic, and genotoxic effects in the human-derived liver cell line (HepG2). These compounds are found in moldy foods in endemic areas of nephropathy, which is associated with urinary tract cancers. In agreement with previous experiments, we found that OTA causes a dose-dependent induction of micronuclei (MN) and DNA migration in the single-cell gel electrophoresis (SCGE) assay, which was statistically significant at concentrations of ≥5 μg/ml. In contrast, OTB was devoid of genotoxic activity under identical conditions, but the compound caused pronounced inhibition of cell division even at doses lower than OTA (10 μg/ml). CIT caused an effect similar to that of OTA in MN assays (significant at dose levels of ≥2.5 μg/ml) but was negative in the SCGE test. All compounds failed to induce mutations in Salmonella/microsome assays in strains TA 98 and TA 100 after addition of HepG2-derived enzyme homogenate (S9-mix). By use of DNA-centromeric probes we found that induction of MN by OTA involves chromosome breaking effects (55-60% of the MN were centromere negative), whereas CIT-induced MN were predominantly centromere positive (78-82%). Our findings indicate that OTB is devoid of genotoxic activity in human-derived cells and therefore probably not a genotoxic carcinogen in humans. In contrast, CIT was an equally potent inducer of MN in HepG2 cells as OTA, but this effect is caused by a different mechanism, namely, aneuploidy. Furthermore, our data suggest that combined exposure to structurally related mycotoxins that cause DNA damage via completely different mechanisms may significantly increase the cancer risk of humans consuming moldy foods.


Journal of Nutrition | 2010

Nondairy Creamer, but Not Milk, Delays the Appearance of Coffee Phenolic Acid Equivalents in Human Plasma

Mathieu Renouf; Cynthia Marmet; Philippe A. Guy; Anne-Lise Fraering; Karin Longet; Julie Moulin; Marc Enslen; Denis Barron; Christophe Cavin; Fabiola Dionisi; Serge Rezzi; Sunil Kochhar; Heike Steiling; Gary Williamson

Chlorogenic acids (CGA) are antioxidants found in coffee. They are becoming of interest for their health-promoting effects, but bioavailability in humans is not well understood. We hypothesized that adding whole milk or sugar and nondairy creamer to instant coffee might modulate the bioavailability of coffee phenolics. Nine healthy participants were asked to randomly drink, in a crossover design, instant coffee (Coffee); instant coffee and 10% whole milk (Milk); or instant coffee, sugar, and nondairy creamer already premixed (Sugar/NDC). All 3 treatments provided the same amount of total CGA (332 mg). Blood was collected for 12 h after ingestion and plasma samples treated using a liquid-liquid extraction method that included a full enzymatic cleavage to hydrolyze all CGA and conjugates into phenolic acid equivalents. Hence, we focused our liquid chromatography-Electrospray ionization-tandem MS detection and quantification on caffeic acid (CA), ferulic acid (FA), and isoferulic acid (iFA) equivalents. Compared with a regular black instant coffee, the addition of milk did not significantly alter the area under the curve (AUC), maximum plasma concentration (C(max)), or the time needed to reach C(max) (T(max)). The C(max) of CA and iFA were significantly lower and the T(max) of FA and iFA significantly longer for the Sugar/NDC group than for the Coffee group. However, the AUC did not significantly differ. As a conclusion, adding whole milk did not alter the overall bioavailability of coffee phenolic acids, whereas sugar and nondairy creamer affected the T(max) and C(max) but not the appearance of coffee phenolics in plasma.


Toxicological Sciences | 2009

Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses.

Christophe Cavin; Thierry Delatour; Maricel Marin-Kuan; François Fenaille; Daisy Holzhäuser; G. Guignard; Claudine Bezençon; Dominique Piguet; Véronique Parisod; Janique Richoz-Payot; Benoît Schilter

Ochratoxin A (OTA) is a mycotoxin occurring in a variety of foods. OTA is nephrotoxic and nephrocarcinogenic in rodents. An OTA-mediated increase of the inducible nitric oxide synthase (iNOS) expression was observed in normal rat kidney renal cell line and in rat hepatocyte cultures, suggesting the induction of nitrosative stress. This was associated with an increased nuclear factor kappa-light chain enhancer of activated B cells activity. The potential consequences of iNOS induction were further investigated. A significant increase in the levels of protein nitrotyrosine residues was observed with OTA. In addition, OTA was found to increase the level of DNA abasic sites in both cell cultures system. This end point was used as an indirect measure of 8-nitroguanine formation. Treatment of the cells with L-N(6)-(1-iminoethyl) lysine, a specific inhibitor of iNOS activity, inhibited the OTA-mediated overnitration of proteins but did not reduce the level of DNA abasic sites. It was found previously that nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activators were able to restore the cellular defense against oxidative stress and could prevent DNA abasic sites in cell cultures. In the present study, pretreatment of the cells with activators of Nrf2 prevented OTA-mediated increase in lipid peroxidation, confirming the potential of Nrf2 activators to confer protection against OTA-mediated oxidative stress. In addition, it was found that Nrf2 activators could also prevent OTA-induced protein nitration and cytotoxicity. In conclusion, the present data further confirm oxidative stress as a key source of OTA-induced DNA damage and provide additional evidence for a role of this mechanism in OTA carcinogenicity. The exact role of nitrosative stress still remains to be established.


British Journal of Nutrition | 2010

Plasma appearance and correlation between coffee and green tea metabolites in human subjects

Mathieu Renouf; Philippe A. Guy; Cynthia Marmet; Karin Longet; Anne-Lise Fraering; Julie Moulin; Denis Barron; Fabiola Dionisi; Christophe Cavin; Heike Steiling; Gary Williamson

Coffee and green tea are two of the most widely consumed hot beverages in the world. Their respective bioavailability has been studied separately, but absorption of their respective bioactive phenolics has not been compared. In a randomised cross-over design, nine healthy subjects drank instant coffee and green tea. Blood samples were collected over 12 h and at 24 h to assess return to baseline. After green tea consumption, (-)-epigallocatechin (EGC) was the major catechin, appearing rapidly in the plasma; (-)-EGC gallate (EGCg) and (-)-epicatechin (EC) were also present, but (-)-EC gallate and C were not detected. Dihydroferulic acid and dihydrocaffeic acid were the major metabolites that appeared after coffee consumption with a long time needed to reach maximum plasma concentration, suggesting metabolism and absorption in the colon. Other phenolic acid equivalents (caffeic acid (CA), ferulic acid (FA) and isoferulic acid (iFA)) were detected earlier, and they peaked at lower concentrations. Summations of the plasma area under the curves (AUC) for the measured metabolites showed 1.7-fold more coffee-derived phenolic acids than green tea-derived catechins (P = 0.0014). Furthermore, we found a significant correlation between coffee metabolites based on AUC. Inter-individual differences were observed, but individuals with a high level of CA also showed a correspondingly high level of FA. However, no such correlation was observed between the tea catechins and coffee phenolic acids. Correlation between AUC and maximum plasma concentration was also significant for CA, FA and iFA and for EGCg. This implies that the mechanisms of absorption for these two classes of compounds are different, and that a high absorber of phenolic acids is not necessarily a high absorber of catechins.

Collaboration


Dive into the Christophe Cavin's collaboration.

Researchain Logo
Decentralizing Knowledge