Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie T. Ziegler is active.

Publication


Featured researches published by Julie T. Ziegler.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus

Chaim O. Jacob; Jiankun Zhu; Don L. Armstrong; Mei Yan; Jie Han; Xin J. Zhou; James Thomas; Andreas Reiff; Barry L. Myones; Joshua O. Ojwang; Kenneth M. Kaufman; Marisa S. Klein-Gitelman; Deborah McCurdy; Linda Wagner-Weiner; Earl D. Silverman; Julie T. Ziegler; Jennifer A. Kelly; Joan T. Merrill; John B. Harley; Rosalind Ramsey-Goldman; Luis M. Vilá; Sang-Cheol Bae; Timothy J. Vyse; Gary S. Gilkeson; Patrick M. Gaffney; Kathy L. Moser; Carl D. Langefeld; Raphael Zidovetzki; Chandra Mohan

A combined forward and reverse genetic approach was undertaken to test the candidacy of IRAK1 (interleukin-1 receptor associated kinase-1) as an X chromosome-encoded risk factor for systemic lupus erythematosus (SLE). In studying ≈5,000 subjects and healthy controls, 5 SNPs spanning the IRAK1 gene showed disease association (P values reaching 10−10, odds ratio >1.5) in both adult- and childhood-onset SLE, in 4 different ethnic groups, with a 4 SNP haplotype (GGGG) being strongly associated with the disease. The functional role of IRAK1 was next examined by using congenic mouse models bearing the disease loci: Sle1 or Sle3. IRAK1 deficiency abrogated all lupus-associated phenotypes, including IgM and IgG autoantibodies, lymphocytic activation, and renal disease in both models. In addition, the absence of IRAK1 reversed the dendritic cell “hyperactivity” associated with Sle3. Collectively, the forward genetic studies in human SLE and the mechanistic studies in mouse models establish IRAK1 as a disease gene in lupus, capable of modulating at least 2 key checkpoints in disease development. This demonstration of an X chromosome gene as a disease susceptibility factor in human SLE raises the possibility that the gender difference in SLE may in part be attributed to sex chromosome genes.


PLOS Genetics | 2011

Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility

Jian Zhao; Hui Wu; Melanie Khosravi; Huijuan Cui; Xiaoxia Qian; Jennifer A. Kelly; Kenneth M. Kaufman; Carl D. Langefeld; Adrienne H. Williams; Mary E. Comeau; Julie T. Ziegler; Miranda C. Marion; Adam Adler; Stuart B. Glenn; Marta E. Alarcón-Riquelme; Bernardo A. Pons-Estel; John B. Harley; Sang-Cheol Bae; So Young Bang; Soo-Kyung Cho; Chaim O. Jacob; Timothy J. Vyse; Timothy B. Niewold; Patrick M. Gaffney; Kathy L. Moser; Robert P. Kimberly; Jeffrey C. Edberg; Elizabeth E. Brown; Graciela S. Alarcón; Michelle Petri

Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, P meta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, P meta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (P meta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (P meta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.


Diabetes | 2008

Quantitative Trait Analysis of Type 2 Diabetes Susceptibility Loci Identified From Whole Genome Association Studies in the Insulin Resistance Atherosclerosis Family Study

Nicholette D. Palmer; Mark O. Goodarzi; Carl D. Langefeld; Julie T. Ziegler; Jill M. Norris; Steven M. Haffner; Richard N. Bergman; Lynne E. Wagenknecht; Kent D. Taylor; Jerome I. Rotter; Donald W. Bowden

OBJECTIVE—Evaluate type 2 diabetes susceptibility variants identified from genome-wide association studies in Hispanic Americans and African Americans from the Insulin Resistance Atherosclerosis Family Study (IRAS-FS) for association with quantitative measures of glucose homeostasis and determine their biological role in vivo. RESEARCH DESIGN AND METHODS—Seventeen type 2 diabetes–associated single nucleotide polymorphisms (SNPs) were genotyped in 1,268 Hispanic- and 581 African-American participants from the IRAS-FS. SNPs were tested for association with quantitative measures of glucose homeostasis, including insulin sensitivity index (SI), acute insulin response (AIR), and disposition index. RESULTS—Previously identified risk variants in cyclin-dependent kinase 5 regulatory subunit associated protein 1-like 1 (CDKAL1) were associated with reduced AIR (P < 0.0046) in Hispanic Americans. Additionally in Hispanic Americans, the variant in a hypothetical gene (chromosome 11; LOC387761) was significantly associated with AIR (P = 0.0046) with the risk allele showing protective effects, i.e., increased AIR. In both Hispanic- and African-American populations, risk variants at the solute carrier family 30, member 8 (SLC30A8) locus were nominally associated with decreased disposition index (P < 0.078). Risk variants in the insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) locus were associated with a decreased disposition index (P = 0.011) exclusively in Hispanic Americans. CONCLUSIONS—These data indicate a distinct, limited number of diabetes-related genes, more specifically the SNPs in the genes identified in European-derived populations, with modest evidence for association with glucose homeostasis traits in Hispanic Americans and African Americans. We observe evidence that diabetes risk for CDKAL1, SLC30A8, IGF2BP2, and LOC387761 is specifically mediated through defects in insulin secretion. The mechanisms of other predisposing genes remain to be elucidated.


Arthritis & Rheumatism | 2009

A polymorphism within IL21R confers risk for systemic lupus erythematosus

Ryan Webb; Joan T. Merrill; Jennifer A. Kelly; Andrea L. Sestak; Kenneth M. Kaufman; Carl D. Langefeld; Julie T. Ziegler; Robert P. Kimberly; Jeffrey C. Edberg; Rosalind Ramsey-Goldman; Michelle Petri; John D. Reveille; Graciela S. Alarcón; Luis M. Vilá; Marta E. Alarcón-Riquelme; Judith A. James; Gary S. Gilkeson; Chaim O. Jacob; Kathy L. Moser; Patrick M. Gaffney; Timothy J. Vyse; Swapan K. Nath; Peter E. Lipsky; John B. Harley; Amr H. Sawalha

OBJECTIVE Interleukin-21 (IL-21) is a member of the type I cytokine superfamily that has a variety of effects on the immune system, including B cell activation, plasma cell differentiation, and immunoglobulin production. The expression of IL-21 receptor (IL-21R) is reduced in the B cells of patients with systemic lupus erythematosus (SLE), while serum IL-21 levels are increased both in lupus patients and in some murine lupus models. We recently reported that polymorphisms within the IL21 gene are associated with increased susceptibility to SLE. The aim of this study was to examine the genetic association between single-nucleotide polymorphisms (SNPs) within IL21R and SLE. METHODS We genotyped 17 SNPs in the IL21R gene in 2 large cohorts of lupus patients (a European-derived cohort and a Hispanic cohort) and in ethnically matched healthy controls. RESULTS We identified and confirmed the association between rs3093301 within the IL21R gene and SLE in the 2 cohorts (meta-analysis odds ratio 1.16 [95% confidence interval 1.08-1.25], P=1.0x10(-4)). CONCLUSION Our findings indicate that IL21R is a novel susceptibility gene for SLE.


British Journal of Nutrition | 2012

Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome.

Susan Sergeant; Christina E. Hugenschmidt; Megan E. Rudock; Julie T. Ziegler; Priscilla Ivester; Hannah C. Ainsworth; Dhananjay Vaidya; L. Douglas Case; Carl D. Langefeld; Barry I. Freedman; Donald W. Bowden; Rasika A. Mathias; Floyd H. Chilton

Over the past 50 years, increases in dietary n-6 PUFA, such as linoleic acid, have been hypothesised to cause or exacerbate chronic inflammatory diseases. The present study examines an individuals innate capacity to synthesise n-6 long-chain PUFA (LC-PUFA) with respect to the fatty acid desaturase (FADS) locus in Americans of African and European descent with diabetes or the metabolic syndrome. Compared with European Americans (EAm), African Americans (AfAm) exhibited markedly higher serum levels of arachidonic acid (AA) (EAm 7·9 (sd 2·1), AfAm 9·8 (sd 1·9) % of total fatty acids; P < 2·29 × 10⁻⁹) and the AA:n-6-precursor fatty acid ratio, which estimates FADS1 activity (EAm 5·4 (sd 2·2), AfAm 6·9 (sd 2·2); P = 1·44 × 10⁻⁵). In all, seven SNP mapping to the FADS locus revealed strong association with AA, EPA and dihomo-γ-linolenic acid (DGLA) in the EAm. Importantly, EAm homozygous for the minor allele (T) had significantly lower AA levels (TT 6·3 (sd 1·0); GG 8·5 (sd 2·1); P = 3·0 × 10⁻⁵) and AA:DGLA ratios (TT 3·4 (sd 0·8), GG 6·5 (sd 2·3); P = 2·2 × 10⁻⁷) but higher DGLA levels (TT 1·9 (sd 0·4), GG 1·4 (sd 0·4); P = 3·3 × 10⁻⁷) compared with those homozygous for the major allele (GG). Allele frequency patterns suggest that the GG genotype at rs174537 (associated with higher circulating levels of AA) is much higher in AfAm (0·81) compared with EAm (0·46). Similarly, marked differences in rs174537 genotypic frequencies were observed in HapMap populations. These data suggest that there are probably important differences in the capacity of different populations to synthesise LC-PUFA. These differences may provide a genetic mechanism contributing to health disparities between populations of African and European descent.


Annals of the Rheumatic Diseases | 2011

Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus

Elena Sanchez; Ajay Nadig; Bruce C. Richardson; Barry I. Freedman; Kenneth M. Kaufman; Jennifer A. Kelly; Timothy B. Niewold; Diane L. Kamen; Gary S. Gilkeson; Julie T. Ziegler; Carl D. Langefeld; Graciela S. Alarcón; Jeffrey C. Edberg; Rosalind Ramsey-Goldman; Michelle Petri; Elizabeth E. Brown; Robert P. Kimberly; John D. Reveille; Luis M. Vilá; Joan T. Merrill; Juan-Manuel Anaya; Judith A. James; Bernardo A. Pons-Estel; Javier Martin; So Yeon Park; So Young Bang; Sang-Cheol Bae; Kathy L. Moser; Timothy J. Vyse; Lindsey A. Criswell

Objective Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion Signifi cant associations were found between clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.


Human Genetics | 2009

Analysis of FTO gene variants with measures of obesity and glucose homeostasis in the IRAS Family Study

Maria R. Wing; Julie T. Ziegler; Carl D. Langefeld; Maggie C.Y. Ng; Steven M. Haffner; Jill M. Norris; Mark O. Goodarzi; Donald W. Bowden

Multiple studies have identified FTO gene variants associated with measures of adiposity in European-derived populations. The objective of the study was to determine whether FTO variants were associated with adiposity, including visceral and subcutaneous adipose tissue (VAT, SAT), and glucose homeostasis measures in the Insulin Resistance Atherosclerosis Family Study (IRASFS). A total of 27 SNPs in FTO intron 1, including SNPs prominent in the literature (rs9939609, rs8050136, rs1121980, rs17817449, rs1421085, and rs3751812), were genotyped in 1,424 Hispanic Americans and 604 African Americans. Multiple SNPs were associated with BMI and SAT (P values ranging from 0.001 to 0.033), and trending or associated with waist circumference (P values ranging from 0.008 to 0.099) in the Hispanic Americans. No association was observed with VAT, illustrating that FTO variants are associated with overall fat mass instead of specific fat depots. For the glucose homeostasis measures, variants were associated with fasting insulin but, consistent with other studies, after BMI adjustment, no evidence of association remained. The lack of association of FTO SNPs with insulin sensitivity is consistent with the lack of association with VAT, since these traits are strongly correlated. In the African Americans, only rs8050136 and rs9939609 were associated with BMI and WAIST (P values of 0.011 and 0.034), and associated or trending towards association with SAT (P values of 0.038 and 0.058). These results confirm that FTO variants are associated with adiposity measures, predisposing individuals to obesity by increasing overall fat mass in Hispanic Americans and to a lesser degree in African Americans.


Arthritis & Rheumatism | 2009

High‐density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups

Bahram Namjou; Andrea L. Sestak; Don L. Armstrong; Raphael Zidovetzki; Jennifer A. Kelly; Noam Jacob Voicu Ciobanu; Kenneth M. Kaufman; Joshua O. Ojwang; Julie T. Ziegler; Francesco P. Quismorio; Andreas Reiff; Barry L. Myones; Joel M. Guthridge; Swapan K. Nath; Gail R. Bruner; Ruth Mehrian-Shai; Earl D. Silverman; Marisa S. Klein-Gitelman; Deborah McCurdy; Linda Wagner-Weiner; James J. Nocton; Chaim Putterman; Sang-Cheol Bae; Yun Jung Kim; Michelle Petri; John D. Reveille; Timothy J. Vyse; Gary S. Gilkeson; Diane L. Kamen; Marta E. Alarcón-Riquelme

OBJECTIVE Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disorder, with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in terms of the pathogenesis of SLE. STAT-1 and STAT-4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for involvement in SLE susceptibility. METHODS Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 on chromosome 2 were genotyped using the Illumina platform, as part of an extensive association study in a large collection of 9,923 lupus patients and control subjects from different racial groups. DNA samples were obtained from the peripheral blood of patients with SLE and control subjects. Principal components analyses and population-based case-control association analyses were performed, and the P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated. RESULTS We observed strong genetic associations with SLE and multiple SNPs located within STAT4 in different ethnic groups (Fishers combined P = 7.02 x 10(-25)). In addition to strongly confirming the previously reported association in the third intronic region of this gene, we identified additional haplotypic association across STAT4 and, in particular, a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to its proximity to STAT4. CONCLUSION Our findings indicate that STAT4 is likely to be a crucial component in SLE pathogenesis in multiple racial groups. Knowledge of the functional effects of this association, when they are revealed, might improve our understanding of the disease and provide new therapeutic targets.


Diabetes | 2006

Coincident linkage of type 2 diabetes, metabolic syndrome, and measures of cardiovascular disease in a genome scan of the diabetes heart study.

Donald W. Bowden; Megan E. Rudock; Julie T. Ziegler; Allison B. Lehtinen; Jianzhao Xu; Lynne E. Wagenknecht; David M. Herrington; Stephen S. Rich; Barry I. Freedman; J. Jeffrey Carr; Carl D. Langefeld

Cardiovascular disease (CVD) is a major contributor to morbidity and mortality in type 2 diabetes, but the relationship between CVD and type 2 diabetes is not well understood. The Diabetes Heart Study is a study of type 2 diabetes–enriched families extensively phenotyped for measures of CVD, type 2 diabetes, and metabolic syndrome. A total of 977 Caucasian subjects from 358 pedigrees (575 type 2 diabetic relative pairs) with at least two individuals with type 2 diabetes and, where possible, unaffected siblings were included in a genome scan. Qualitative traits evaluated in this analysis are with or without the presence of coronary calcified plaque (CCP) and with or without carotid calcified plaque (CarCP) measured by electrocardiogram–gated helical computed tomography. In addition, prevalent CVD was measured using two definitions: CVD1, based on self-reported history of clinical CVD (393 subjects), and CVD2, defined as CVD1 and/or CCP >400 (606 subjects). These discrete traits (type 2 diabetes, metabolic syndrome, CVD1, CVD2, CCP, and CarCP) frequently coincide in the same individuals with concordance ranging from 42.9 to 99%. Multipoint nonparametric linkage analysis revealed evidence for coincident mapping of each trait (type 2 diabetes, metabolic syndrome, CVD1, CVD2, CCP, and CarCP) to three different genomic regions: a broad region on chromosome 3 (70–160 cM; logarithm of odds [LOD] scores ranging between 1.15 and 2.71), chromosome 4q31 (peak LOD 146 cM; LOD scores ranging between 0.90 and 2.41), and on chromosome 14p (peak LOD 23 cM; LOD scores ranging between 1.43 and 2.31). Ordered subset analysis (OSA) suggests that the linked chromosome 3 region consists of at least two separate loci on 3p and 3q. In addition, OSA based on lipid measures and other traits identify family subsets with significantly stronger evidence of linkage (e.g., CVD2 on chromosome 3 at 87 cM subsetting on low HDL with an initial LOD of 2.19 is maximized to an LOD of 7.04 in a subset of 25% of the families and CVD2 on chromosome 14 at 22 cM subsetting on high triglycerides with an initial LOD of 1.99 maximized to an LOD of 4.90 in 44% of the families). When subjects are defined as affected by the presence of each trait (type 2 diabetes, metabolic syndrome, CVD1, and CCP), significant evidence for linkage to the 3p locus is observed with a peak LOD of 4.13 at 87 cM. While the correlated nature of the traits makes it unclear whether these loci represent distinct type 2 diabetes, metabolic syndrome, or CVD loci or single loci with pleiotropic effects, the coincident linkage suggests that identification of the underlying genes may help clarify the relationship of diabetes, metabolic syndrome, and CVD.


BMC Genetics | 2011

The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans

Rasika A. Mathias; Susan Sergeant; Ingo Ruczinski; Dara G. Torgerson; Christina E. Hugenschmidt; Meghan Kubala; Dhananjay Vaidya; Bhoom Suktitipat; Julie T. Ziegler; Priscilla Ivester; Douglas Case; Lisa R. Yanek; Barry I. Freedman; Megan E. Rudock; Kathleen C. Barnes; Carl D. Langefeld; Lewis C. Becker; Donald W. Bowden; Diane M. Becker; Floyd H. Chilton

BackgroundArachidonic acid (AA) is a long-chain omega-6 polyunsaturated fatty acid (PUFA) synthesized from the precursor dihomo-gamma-linolenic acid (DGLA) that plays a vital role in immunity and inflammation. Variants in the Fatty Acid Desaturase (FADS) family of genes on chromosome 11q have been shown to play a role in PUFA metabolism in populations of European and Asian ancestry; no work has been done in populations of African ancestry to date.ResultsIn this study, we report that African Americans have significantly higher circulating levels of plasma AA (p = 1.35 × 10-48) and lower DGLA levels (p = 9.80 × 10-11) than European Americans. Tests for association in N = 329 individuals across 80 nucleotide polymorphisms (SNPs) in the Fatty Acid Desaturase (FADS) locus revealed significant association with AA, DGLA and the AA/DGLA ratio, a measure of enzymatic efficiency, in both racial groups (peak signal p = 2.85 × 10-16 in African Americans, 2.68 × 10-23 in European Americans). Ancestry-related differences were observed at an upstream marker previously associated with AA levels (rs174537), wherein, 79-82% of African Americans carry two copies of the G allele compared to only 42-45% of European Americans. Importantly, the allelic effect of the G allele, which is associated with enhanced conversion of DGLA to AA, on enzymatic efficiency was similar in both groups.ConclusionsWe conclude that the impact of FADS genetic variants on PUFA metabolism, specifically AA levels, is likely more pronounced in African Americans due to the larger proportion of individuals carrying the genotype associated with increased FADS1 enzymatic conversion of DGLA to AA.

Collaboration


Dive into the Julie T. Ziegler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Kelly

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth M. Kaufman

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Graciela S. Alarcón

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Chaim O. Jacob

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jill M. Norris

Colorado School of Public Health

View shared research outputs
Top Co-Authors

Avatar

Michelle Petri

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge