Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julie Urban is active.

Publication


Featured researches published by Julie Urban.


Cancer Research | 2008

Ability of Mature Dendritic Cells to Interact with Regulatory T Cells Is Imprinted during Maturation

Ravikumar Muthuswamy; Julie Urban; Je-Jung Lee; Todd A. Reinhart; David L. Bartlett; Pawel Kalinski

Preferential activation of regulatory T (Treg) cells limits autoimmune tissue damage during chronic immune responses but can also facilitate tumor growth. Here, we show that tissue-produced inflammatory mediators prime maturing dendritic cells (DC) for the differential ability of attracting anti-inflammatory Treg cells. Our data show that prostaglandin E(2) (PGE(2)), a factor overproduced in chronic inflammation and cancer, induces stable Treg-attracting properties in maturing DC, mediated by CCL22. The elevated production of CCL22 by PGE(2)-matured DC persists after the removal of PGE(2) and is further elevated after secondary stimulation of DC in a neutral environment. This PGE(2)-induced overproduction of CCL22 and the resulting attraction of FOXP3(+) Tregs are counteracted by IFN alpha, a mediator of acute inflammation, which also restores the ability of the PGE(2)-exposed DC to secrete the Th1-attracting chemokines: CXCL9, CXCL10, CXCL11, and CCL5. In accordance with these observations, different DCs clinically used as cancer vaccines show different Treg-recruiting abilities, with PGE(2)-matured DC, but not type 1-polarized DC, generated in the presence of type I and type II IFNs, showing high Treg-attracting activity. The current data, showing that the ability of mature DC to interact with Treg cells is predetermined at the stage of DC maturation, pave the way to preferentially target the regulatory versus proinflammatory T cells in autoimmunity and transplantation, as opposed to intracellular infections and cancer.


Molecular Therapy | 2011

Chemokine Expression From Oncolytic Vaccinia Virus Enhances Vaccine Therapies of Cancer

Jun Li; Mark E. O'Malley; Julie Urban; Padma Sampath; Z. Sheng Guo; Pawel Kalinski; Steve H. Thorne; David L. Bartlett

Tumor vaccines can induce robust immune responses targeting tumor antigens in the clinic, but antitumor effects have been disappointing. One reason for this is ineffective tumor infiltration of the cytotoxic T lymphocytes (CTLs) produced. Oncolytic viruses are capable of selectively replicating within tumor tissue and can induce a strong immune response. We therefore sought to determine whether these therapies could be rationally combined such that modulation of the tumor microenvironment by the viral therapy could help direct beneficial CTLs induced by the vaccine. As such, we examined the effects of expressing chemokines from oncolytic vaccinia virus, including CCL5 (RANTES), whose receptors are expressed on CTLs induced by different vaccines, including type-1-polarized dendritic cells (DC1). vvCCL5, an oncolytic vaccinia virus expressing CCL5, induced chemotaxis of lymphocyte populations in vitro and in vivo, and displayed improved safety in vivo. Interestingly, enhanced therapeutic benefits with vvCCL5 in vivo correlated with increased persistence of the viral agent exclusively within the tumor. When tumor-bearing mice were both vaccinated with DC1 and treated with vvCCL5 a further significant enhancement in tumor response was achieved which correlated with increased levels of tumor infiltrating lymphocytes. This approach therefore represents a novel means of combining biological therapies for cancer treatment.


Cancer Immunology, Immunotherapy | 2009

Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines.

Adam Giermasz; Julie Urban; Yutaro Nakamura; Payal Watchmaker; Rachel Cumberland; William E. Gooding; Pawel Kalinski

While multiple pathways of dendritic cell (DC) maturation result in transient production of IL-12, fully mature DCs show reduced ability to produce IL-12p70 upon a subsequent interaction with Ag-specific T cells, limiting their in vivo performance as vaccines. Such “DC exhaustion” can be prevented by the presence of IFNγ during the maturation of human DCs (type-1-polarization), resulting in improved induction of tumor-specific Th1 and CTL responses in vitro. Here, we show that type-1 polarization of mouse DCs strongly enhances their ability to induce CTL responses against a model tumor antigen, OVA, in vivo, promoting the induction of protective immunity against OVA-expressing EG7 lymphoma. Interestingly, in contrast to the human system, the induction of mouse DC1s requires the participation of IL-4, a nominal Th2-inducing cytokine. The current data help to explain the previously reported Th1-driving and anti-tumor activities of IL-4, and demonstrate that type-1 polarization increases in vivo activity of DC-based vaccines.


Journal of Immunology | 2010

Independent Regulation of Chemokine Responsiveness and Cytolytic Function versus CD8+ T Cell Expansion by Dendritic Cells

Payal Watchmaker; Erik Berk; Ravikumar Muthuswamy; Robbie B. Mailliard; Julie Urban; John M. Kirkwood; Pawel Kalinski

The ability of cancer vaccines to induce tumor-specific CD8+ T cells in the circulation of cancer patients has been shown to poorly correlate with their clinical effectiveness. In this study, we report that although Ags presented by different types of mature dendritic cells (DCs) are similarly effective in inducing CD8+ T cell expansion, the acquisition of CTL function and peripheral-type chemokine receptors, CCR5 and CXCR3, requires Ag presentation by a select type of DCs. Both “standard” DCs (matured in the presence of PGE2) and type 1-polarized DCs (DC1s) (matured in the presence of IFNs and TLR ligands, which prevent DCs “exhaustion”) are similarly effective in inducing CD8+ T cell expansion and acquisition of CD45RO+IL-7R+IL-15R+ phenotype. However, granzyme B expression, acquisition of CTL activity, and peripheral tissue-type chemokine responsiveness are features exclusively exhibited by CD8+ T cells activated by DC1s. This advantage of DC1s was observed in polyclonally activated naive and memory CD8+ T cells and in blood-isolated melanoma-specific CTL precursors. Our data help to explain the dissociation between the ability of cancer vaccines to induce high numbers of tumor-specific CD8+ T cells in the blood of cancer patients and their ability to promote clinical responses, providing for new strategies of cancer immunotherapy.


Journal of Virology | 2009

Reevaluating the CD8 T-Cell Response to Herpes Simplex Virus Type 1: Involvement of CD8 T Cells Reactive to Subdominant Epitopes

Brian S. Sheridan; Thomas L. Cherpes; Julie Urban; Pawel Kalinski; Robert L. Hendricks

ABSTRACT In C57BL/6 (B6) mice, most herpes simplex virus (HSV)-specific CD8 T cells recognize a strongly immunodominant epitope on glycoprotein B (gB498) and can inhibit HSV type 1 (HSV-1) reactivation from latency in trigeminal ganglia (TG). However, half of the CD8 T cells retained in latently infected TG of B6 mice are not gB498 specific and have been largely ignored. The following observations from our current study indicate that these gB498-nonspecific CD8 T cells are HSV specific and may contribute to the control of HSV-1 latency. First, following corneal infection, OVA257-specific OT-1 CD8 T cells do not infiltrate the infected TG unless mice are simultaneously immunized with OVA257 peptide, and then they are not retained. Second, 30% of CD8 T cells in acutely infected TG that produce gamma interferon in response to HSV-1 stimulation directly ex vivo are gB498 nonspecific, and these cells maintain an activation phenotype during viral latency. Finally, gB498-nonspecific CD8 T cells are expanded in ex vivo cultures of latently infected TG and inhibit HSV-1 reactivation from latency in the absence of gB498-specific CD8 T cells. We conclude that many of the CD8 T cells that infiltrate and are retained in infected TG are HSV specific and potentially contribute to maintenance of HSV-1 latency. Identification of the viral proteins recognized by these cells will contribute to a better understanding of the dynamics of HSV-1 latency.


Journal of Immunology | 2004

Ikaros Null Mice Display Defects in T Cell Selection and CD4 versus CD8 Lineage Decisions

Julie Urban; Susan Winandy

Previous evidence suggested that the hemopoietic-specific nuclear factor Ikaros regulates TCR signaling thresholds in mature T cells. In this study, we test the hypothesis that Ikaros also sets TCR signaling thresholds to regulate selection events and CD4 vs CD8 lineage determination in developing thymocytes. Ikaros null mice were crossed to three lines of TCR-transgenic mice, and positive selection, negative selection, and CD4 vs CD8 lineage decisions were analyzed. Mice expressing a polyclonal repertoire or a MHC class II-restricted TCR transgene exhibited enhanced positive selection toward the CD4 lineage. Moreover, in the absence of Ikaros, CD4 development can occur with decreased thresholds of TCR signaling. In addition, CD4 single-positive thymocytes were detected in MHC class I-restricted TCR-transgenic Ikaros null mice. To assess the role of Ikaros in negative selection, we analyzed deletion of T cells induced by conventional Ag or by endogenous superantigen. Surprisingly, negative selection was impaired in Ikaros null thymocytes despite evidence of high levels of TCR signal and no intrinsic defect in apoptosis ex vivo. To our knowledge, these data identify Ikaros as the first nuclear factor that plays a critical role in regulating negative selection as well as CD4 vs CD8 lineage decisions during positive selection.


Expert Review of Vaccines | 2013

Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies

Pawel Kalinski; Ravikumar Muthuswamy; Julie Urban

Dendritic cells (DCs) are specialized immunostimulatory cells involved in the induction and regulation of immune responses. The feasibility of large-scale ex vivo generation of DCs from patients’ monocytes allows for therapeutic application of ex vivo-cultured DCs to bypass the dysfunction of endogenous DCs, restore immune surveillance, induce cancer regression or stabilization or delay or prevent its recurrence. While the most common paradigm of the therapeutic application of DCs reflects their use as cancer ‘vaccines’, additional and potentially more effective possibilities include the use of patients’ autologous DCs as parts of more comprehensive therapies involving in vivo or ex vivo induction of tumor-reactive T cells and the measures to counteract systemic and local immunosuppression in tumor-bearing hosts. Ex vivo-cultured DCs can be instructed to acquire distinct functions relevant for the induction of effective cancer immunity (DC polarization), such as the induction of different effector functions or different homing properties of tumor-specific T cells (delivery of ‘signal 3’ and ‘signal 4’). These considerations highlight the importance of the application of optimized conditions for the ex vivo culture of DCs and the potential combination of DC therapies with additional immune interventions to facilitate the entry of DC-induced T cells to tumor tissues and their local antitumor functions.


Journal of Immunology | 2008

Memory CD8+ T Cells Protect Dendritic Cells from CTL Killing

Payal Watchmaker; Julie Urban; Erik Berk; Yutaro Nakamura; Robbie B. Mailliard; Simon C. Watkins; S. Marieke van Ham; Pawel Kalinski

CD8+ T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8+ T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8+ T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4+ and CD8+ T cell populations. Moreover, memory CD8+ T cells that release the DC-activating factor TNF-α before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4+ Th cells. The currently identified DC-protective function of memory CD8+ T cells helps to explain the phenomenon of CD8+ T cell memory, reduced dependence of recall responses on CD4+ T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.


Oncotarget | 2016

Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer

Lily Francis; Zong Sheng Guo; Zuqiang Liu; Roshni Ravindranathan; Julie Urban; Magesh Sathaiah; Deepa Magge; Pawel Kalinski; David L. Bartlett

An oncolytic poxvirus such as vvDD-CXCL11 can generate potent systemic antitumor immunity as well as targeted oncolysis, yet the antitumor effect is limited probably due to limited homing to and suppressed activity of tumor-specific adaptive immune cells in the tumor microenvironment (TME). We reasoned that a chemokine modulating (CKM) drug cocktail, consisting of IFN-α, poly I:C, and a COX-2 inhibitor, may skew the chemokine (CK) and cytokine profile into a favorable one in the TME, and this pharmaceutical modulation would enhance both the trafficking into and function of antitumor immune cells in the TME, thus increasing therapeutic efficacy of the oncolytic virus. In this study we show for the first time in vivo that the CKM modulates the CK microenvironment but it does not modulate antitumor immunity by itself in a MC38 colon cancer model. Sequential treatment with the virus and then CKM results in the upregulation of Th1-attracting CKs and reduction of Treg-attracting CKs (CCL22 and CXCL12), concurrent with enhanced trafficking of tumor-specific CD8+ T cells and NK cells into the TME, thus resulting in the most significant antitumor activity and long term survival of tumor-bearing mice. This novel combined regimen, with the oncolytic virus (vvDD-CXCL11) inducing direct oncolysis and eliciting potent antitumor immunity, and the CKM inducing a favorable chemokine profile in the TME that promotes the trafficking and function of antitumor Tc1/Th1 and NK cells, may have great utility for oncolytic immunotherapy for cancer.


ImmunoTargets and Therapy | 2014

Therapeutic cancer vaccines and combination immunotherapies involving vaccination

Trang Nguyen; Julie Urban; Pawel Kalinski

Recent US Food and Drug Administration approvals of Provenge® (sipuleucel-T) as the first cell-based cancer therapeutic factor and ipilimumab (Yervoy®/anticytotoxic T-lymphocyte antigen-4) as the first “checkpoint blocker” highlight recent advances in cancer immunotherapy. Positive results of the clinical trials evaluating additional checkpoint blocking agents (blockade of programmed death [PD]-1, and its ligands, PD-1 ligand 1 and 2) and of several types of cancer vaccines suggest that cancer immunotherapy may soon enter the center stage of comprehensive cancer care, supplementing surgery, radiation, and chemotherapy. This review discusses the current status of the clinical evaluation of different classes of therapeutic cancer vaccines and possible avenues for future development, focusing on enhancing the magnitude and quality of cancer-specific immunity by either the functional reprogramming of patients’ endogenous dendritic cells or the use of ex vivo-manipulated dendritic cells as autologous cellular transplants. This review further discusses the available strategies aimed at promoting the entry of vaccination-induced T-cells into tumor tissues and prolonging their local antitumor activity. Finally, the recent improvements to the above three modalities for cancer immunotherapy (inducing tumor-specific T-cells, prolonging their persistence and functionality, and enhancing tumor homing of effector T-cells) and rationale for their combined application in order to achieve clinically effective anticancer responses are addressed.

Collaboration


Dive into the Julie Urban's collaboration.

Top Co-Authors

Avatar

Pawel Kalinski

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Berk

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Giermasz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Brian S. Sheridan

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge