Julien Claudon
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Claudon.
Optics Express | 2009
I. Friedler; Christophe Sauvan; Jean-Paul Hugonin; Philippe Lalanne; Julien Claudon; Jean-Michel Gérard
We design several single-photon-sources based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. Through various taper designs, we engineer the nanowire ends to realize efficient metallic-dielectric mirrors and to reduce the divergence of the far-field radiation diagram. Using fully-vectorial calculations and a comprehensive Fabry-Perot model, we show that various realistic nanowire geometries may act as nanoantennas (volume of approximately 0.05 lambda(3)) that assist funnelling the emitted photons into a single monomode channel. Typically, very high extraction efficiencies above 90% are predicted for a collection optics with a numerical aperture NA=0.85. In addition, since no frequency-selective effect is used in our design, this large efficiency is achieved over a remarkably broad spectral range, Deltalambda=70 nm at lambda=950 nm.
Applied Physics Letters | 2008
C. Böckler; S. Reitzenstein; C. Kistner; Ralph Debusmann; A. Löffler; T. Kida; Sven Höfling; A. Forchel; Laurent Grenouillet; Julien Claudon; Jean-Michel Gérard
We report on high quality electrically driven quantum dot micropillar cavities with Q-factors up to 16.000. The high Q-factors allow the observation of pronounced single dot resonance effects with a Purcell enhancement of about 10.
Nature Nanotechnology | 2013
I. Yeo; Pierre-Louis de Assis; Arnaud Gloppe; Eva Dupont-Ferrier; Pierre Verlot; Nitin S. Malik; Emmanuel Dupuy; Julien Claudon; Jean-Michel Gérard; Alexia Auffèves; Gilles Nogues; Signes Seidelin; Jean-Philippe Poizat; Olivier Arcizet; Maxime Richard
Recent progress in nanotechnology has allowed the fabrication of new hybrid systems in which a single two-level system is coupled to a mechanical nanoresonator. In such systems the quantum nature of a macroscopic degree of freedom can be revealed and manipulated. This opens up appealing perspectives for quantum information technologies, and for the exploration of the quantum-classical boundary. Here we present the experimental realization of a monolithic solid-state hybrid system governed by material strain: a quantum dot is embedded within a nanowire that features discrete mechanical resonances corresponding to flexural vibration modes. Mechanical vibrations result in a time-varying strain field that modulates the quantum dot transition energy. This approach simultaneously offers a large light-extraction efficiency and a large exciton-phonon coupling strength g0. By means of optical and mechanical spectroscopy, we find that g0/2 π is nearly as large as the mechanical frequency, a criterion that defines the ultrastrong coupling regime.
Physical Review Letters | 2013
Mathieu Munsch; Nitin S. Malik; Emmanuel Dupuy; Adrien Delga; Joël Bleuse; Jean-Michel Gérard; Julien Claudon; Niels Gregersen; Jesper Mørk
We introduce the photonic trumpet, a dielectric structure which ensures a nearly perfect coupling between an embedded quantum light source and a Gaussian free-space beam. A photonic trumpet exploits both the broadband spontaneous emission control provided by a single-mode photonic wire and the adiabatic expansion of this mode within a conical taper. Numerical simulations highlight the outstanding performance and robustness of this concept. As a first application in the field of quantum optics, we report the realisation of an ultra-bright single-photon source. The device, a GaAs photonic trumpet containing few InAs quantum dots, demonstrates a first-lens external efficiency of 0.75 ± 0.1.
Applied Physics Letters | 2008
M. Tarkhov; Julien Claudon; J.-Ph. Poizat; Alexander Korneev; A. Divochiy; O. Minaeva; Vitaliy Seleznev; N. Kaurova; B. Voronov; Alexander Semenov; G. N. Gol’tsman
We have measured the ultrafast reset time of NbN superconducting single photon detectors (SSPDs) based on a design consisting of N parallel superconducting stripes. Compared to a standard SSPD of identical active area, the parallel SSPD displays a similar detection efficiency and a kinetic inductance, which is divided by N2. For N=12, the duration of the voltage detection pulse is reduced by nearly two orders of magnitude down to 200ps. The timing jitter associated with the rising front is only 16ps. These results open a way to efficient detectors with ultrahigh counting rate exceeding 1 GHz.
Optics Express | 2010
Niels Gregersen; Torben Roland Nielsen; Jesper Mørk; Julien Claudon; Jean-Michel Gérard
We propose and analyze three electrically-pumped nanowire single-photon source structures, which achieve output efficiencies of more than 80%. These structures are based on a quantum dot embedded in a photonic nanowire with carefully tailored ends and optimized contact electrodes. Contrary to conventional cavity-based sources, this non-resonant approach provides broadband spontaneous emission control and features an improved fabrication tolerance towards surface roughness and imperfections. Using an element-splitting approach, we analyze the various building blocks of the designs with respect to realistic variations of the experimental fabrication parameters.
Optics Letters | 2008
Niels Gregersen; Torben Roland Nielsen; Julien Claudon; Jean-Michel Gérard; Jesper Mørk
The influence of a tapering on nanowire light-emission profiles is studied. We show that, for nanowires with divergent output beams, the introduction of a conical tapering with a small opening angle reduces the beam divergence and increases transmission. This results in a dramatic increase in the collection efficiency of the detection optics. For a realistic tapering and a modest NA, the collection efficiency is enhanced by more than a factor of 2. This improvement is ensured by the adiabatic expansion of the guided mode in the tapering.
Optics Letters | 2008
Inbal Friedler; Philippe Lalanne; Jean-Paul Hugonin; Julien Claudon; Jean-Michel Gérard; Alexios Beveratos; Isabelle Robert-Philip
Using a fully vectorial frequency-domain aperiodic Fourier modal method, we study nanowire metallic mirrors and their photonic performance. We show that the performance of standard quarter-wave Bragg mirrors at subwavelength diameters is surprisingly poor, while engineered metallic mirrors that incorporate a thin dielectric adlayer may offer reflectance larger than 90% even for diameters as small as lambda/5.
Physical Review Letters | 2005
Jani Kivioja; Tommi Nieminen; Julien Claudon; Olivier Buisson; F. W. J. Hekking; Jukka P. Pekola
We have investigated the dynamics of underdamped Josephson junctions. In addition to the usual crossover between macroscopic quantum tunnelling and thermally activated (TA) behaviour we observe in our samples with relatively small Josephson coupling E_J, for the first time, the transition from TA behaviour to underdamped phase diffusion. Above the crossover temperature the threshold for switching into the finite voltage state becomes extremely sharp. We propose a (T,E_J) phase-diagram with various regimes and show that for a proper description of it dissipation and level quantization in a metastable well are crucial.
Physical Review Letters | 2004
Julien Claudon; F. Balestro; F. W. J. Hekking; Olivier Buisson
We have observed coherent oscillations in a multilevel quantum system, formed by a current-biased dc SQUID. These oscillations have been induced by applying resonant microwave pulses of flux. Quantum measurement is performed by a nanosecond flux pulse that projects the final state onto one of two different voltage states of the dc SQUID, which can be read out. The number of quantum states involved in the coherent oscillations increases with increasing microwave power. The dependence of the oscillation frequency on microwave power deviates strongly from the linear regime expected for a two-level system and can be very well explained by a theoretical model taking into account the anharmonicity of the multilevel system.