Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Grondin is active.

Publication


Featured researches published by Julien Grondin.


IEEE Transactions on Medical Imaging | 2014

Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation.

Gary Y. Hou; Jean Provost; Julien Grondin; Shutao Wang; Fabrice Marquet; Ethan Bunting; Elisa E. Konofagou

Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/°C, and 2.03±0.93%/°C, respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2015

Intracardiac myocardial elastography in canines and humans in vivo

Julien Grondin; Elaine Wan; Alok Gambhir; Hasan Garan; Elisa E. Konofagou

Intracardiac echocardiography (ICE) is a useful imaging modality which is used during RF ablation procedures to identify anatomical structures. Utilizing ICE in conjunction with myocardial elastography (ME) can provide additional information on the mechanical properties of cardiac tissue and provide information on mechanical changes caused by ablation. The objective of this study was to demonstrate that ICE can be used at high frame rate using a diverging beam transmit sequence to image myocardial strain and differentiate myocardial tissue properties before, during, and after ablation for a clinical ablation procedure. In this feasibility study, three normal canines and eight patients with atrial fibrillation (AF) were studied in vivo. A 5.8-MHz ICE transducer was used to image the heart with a diverging beam transmit method achieving 1200 frames per second (fps). Cumulative axial displacement estimation was performed using 1-D cross-correlation with a window size of 2.7 mm and 95% overlap. Axial cumulative strains were estimated in the left atrium (LA) and right atrium (RA) using a least-squares estimator with a kernel of 2 mm on the axial displacements. In the canine case, radial thickening was detected in the lateral wall and in the interatrial septum during LA emptying. For AF patients, the mean absolute strain in the ablated region was lower (6.7 ± 3.1%) than before the ablation (17.4 ± 9.3%) in LA at the end of the LA emptying phase. In the cavotricuspid isthmus (CTI) region, mean absolute strain magnitude at the end of the RA emptying phase was found to be higher during ablation (43.0 ± 18.1%) compared with after ablation (33.7 ± 15.8%). Myocardial strains in the LA of an AF patient were approximately 2.6 times lower in the ablated region than before ablation. This initial feasibility indicates that ME can be used as a new imaging modality in conjunction with ICE in RF ablation guidance and lesion monitoring.


Physics in Medicine and Biology | 2016

Electromechanical wave imaging (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo

Alexandre Costet; Elaine Wan; Ethan Bunting; Julien Grondin; Hasan Garan; Elisa E. Konofagou

Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n  =  6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Judes EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R 2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method to accurately characterize and localize sources of arrhythmias.


Heart Rhythm | 2016

Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm

Julien Grondin; Alexandre Costet; Ethan Bunting; Alok Gambhir; Hasan Garan; Elaine Wan; Elisa E. Konofagou

BACKGROUND Accurate determination of regional areas of arrhythmic triggers is of key interest to diagnose arrhythmias and optimize their treatment. Electromechanical wave imaging (EWI) is an ultrasound technique that can image the transient deformation in the myocardium after electrical activation and therefore has the potential to detect and characterize location of triggers of arrhythmias. OBJECTIVES The objectives of this study were to investigate the relationship between the electromechanical and the electrical activation of the left ventricular (LV) endocardial surface during epicardial and endocardial pacing and during sinus rhythm as well as to map the distribution of electromechanical delays. METHODS In this study, 6 canines were investigated. Two external electrodes were sutured onto the epicardial surface of the LV. A 64-electrode basket catheter was inserted through the apex of the LV. Ultrasound channel data were acquired at 2000 frames/s during epicardial and endocardial pacing and during sinus rhythm. Electromechanical and electrical activation maps were synchronously obtained from the ultrasound data and the basket catheter, respectively. RESULTS The mean correlation coefficient between electromechanical and electrical activation was 0.81 for epicardial anterior pacing, 0.79 for epicardial lateral pacing, 0.69 for endocardial pacing, and 0.56 for sinus rhythm. CONCLUSION The electromechanical activation sequence determined by EWI follows the electrical activation sequence and more specifically in the case of pacing. This finding is of key interest in the role that EWI can play in the detection of the anatomical source of arrhythmias and the planning of pacing therapies such as cardiovascular resynchronization therapy.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2015

Atrial electromechanical cycle length mapping in paced canine hearts in vivo

Alexandre Costet; Ethan Bunting; Julien Grondin; Alok Gambhir; Elisa E. Konofagou

Atrial arrhythmias affect millions of people worldwide. Characterization and study of arrhythmias in the atria in the clinic is currently performed point by point using mapping catheters capable of generating maps of the electrical activation rate or cycle length. In this paper, we describe a new ultrasound-based mapping technique called electromechanical cycle length mapping (ECLM) capable of estimating the electromechanical activation rate, or cycle length, i.e., the rate of the mechanical activation of the myocardium which follows the electrical activation. ECLM relies on frequency analysis of the incremental strain within the atria and can be performed in a single acquisition. ECLM was validated in a canine model paced from the left atrial appendage, against pacing rates within the reported range of cycle lengths previously measured during atrial arrhythmias such as atrial fibrillation. Correlation between the global estimated electromechanical cycle lengths and pacing rates was shown to be excellent (slope = 0.983, intercept = 3.91, r2 = 0.9999). The effect of the number of cardiac cycles on the performance of ECLM was also investigated and the reproducibility of ECLM was demonstrated (error between consecutive acquisitions for all pacing rates: 6.3 ± 4.3%). These findings indicate the potential of ECLM for noninvasively characterizing atrial arrhythmias and provide feedback on the treatment planning of catheter ablation procedures in the clinic.


Journal of Visualized Experiments | 2015

Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

Julien Grondin; Thomas Payen; Shutao Wang; Elisa E. Konofagou

Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.


internaltional ultrasonics symposium | 2016

Intracardiac myocardial elastography for lesion quantification in cardiac radiofrequency ablation

Ethan Bunting; Clement Papadacci; Elaine Wan; Julien Grondin; Elisa E. Konofagou

Radiofrequency ablation of the myocardium is used to treat various cardiac arrhythmias. The size, spacing, and transmurality of lesions have been shown to affect the success of the ablation procedure; however, there is currently no method to directly image the size and formation of ablation lesions in real time. Intracardiac myocardial elastrography has been used previously to image the reduction in end-systolic strain in the ablated region as a result of the lesion formation. However, the relationship between end-systolic strain change and lesion size has not been investigated. In this study, a large animal model is used to establish a relationship between the area affected by the strain reduction and lesion volume. Ablation lesions (n=10) were created in the left ventricular epicardium in five anesthetized canines. A clinical intracardiac echocardiography machine was programmed to emit a custom diverging beam sequence at 600 Hz and used to image the ablation site before and after the induction of a lesion. Cumulative strains were estimated over systole using a normalized cross-correlation displacement algorithm and a Savitzky-Golay strain kernel. The reduction in strain as a result of the ablation was computed by comparing cumulative end-systolic strains before and after ablation. Lesion volume was also measured ex vivo and compared to the area of significant strain change (>8% reduction) for each lesion. A good correlation was found between the area of significant strain change and lesion volume (r2 = 0.86). These results indicate that end-systolic strain measured using ME can be used to estimate the size of lesions induced during an RF ablation procedure, potentially assisting clinicians in lesion formation assessment during the procedure.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2017

Cardiac Strain Imaging With Coherent Compounding of Diverging Waves

Julien Grondin; Vincent Sayseng; Elisa E. Konofagou

Current methods of cardiac strain imaging at high frame rate suffer from motion matching artifacts or poor lateral resolution. Coherent compounding has been shown to improve echocardiographic image quality while maintaining a high frame rate, but has never been used to image cardiac strain. However, myocardial velocity can have an impact on coherent compounding due to displacements between frames. The objective of this paper was to investigate the feasibility and performance of coherent compounding for cardiac strain imaging at a low and a high myocardial velocity. Left-ventricular contraction in short-axis view was modeled as an annulus with radial thickening and circumferential rotation. Simulated radio-frequency channel data with a cardiac phased array were obtained using three different beamforming methods: single diverging wave, coherent compounding of diverging waves, and conventional focusing. Axial and lateral displacements and strains as well as radial strains were estimated and compared to their true value. In vivo feasibility of cardiac strain imaging with coherent compounding was performed and compared to single diverging wave imaging. At low myocardial velocities, the axial, lateral, and radial strain relative error for nine compounded waves (16.3%, 40.4%, and 18.9%) were significantly lower than those obtained with single diverging wave imaging (19.9%, 80.3%, and 30.6%) and closer to that obtained with conventional focusing (16.7%, 43.7%, and 16%). In vivo left-ventricular radial strains exhibited higher quality with nine compounded waves than with single diverging wave imaging. These results indicate that cardiac strain can be imaged using coherent compounding of diverging waves with a better performance than with single diverging wave imaging while maintaining a high frame rate, and therefore, has the potential to improve diagnosis of myocardial strain-based cardiac diseases.


Ultrasound in Medicine and Biology | 2018

Non-invasive Characterization of Focal Arrhythmia with Electromechanical Wave Imaging in Vivo

Alexandre Costet; Elaine Wan; Lea Melki; Ethan Bunting; Julien Grondin; Hasan Garan; Elisa E. Konofagou

There is currently no established method for the non-invasive characterization of arrhythmia and differentiation between endocardial and epicardial triggers at the point of care. Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging technique based on time-domain transient strain estimation that can map and characterize electromechanical activation in the heart in vivo. The objectives of this initial feasibility study were to determine that EWI is capable of differentiating between endocardial and epicardial sources of focal rhythm and, as a proof-of-concept, that EWI could characterize focal arrhythmia in one patient with premature ventricular contractions (PVCs) before radiofrequency (RF) ablation treatment. First, validation of EWI for differentiation of surface of origin was performed in seven (n = 7) adult dogs using four epicardial and four endocardial pacing protocols. Second, one (n = 1) adult patient diagnosed with PVC was imaged with EWI before the scheduled RF ablation procedure, and EWI results were compared with mapping procedure results. In dogs, EWI was capable of detecting whether pacing was of endocardial or epicardial origin in six of seven cases (86% success rate). In the PVC patient, EWI correctly identified both regions and surface of origin, as confirmed by results from the electrical mapping obtained from the RF ablation procedure. These results reveal that EWI can map the electromechanical activation across the myocardium and indicate that EWI could serve as a valuable pre-treatment planning tool in the clinic.


internaltional ultrasonics symposium | 2017

Comparison between fully and partially focused transmit strategies in transthoracic cardiac strain estimation

Vincent Sayseng; Julien Grondin; Elisa E. Konofagou

Myocardial elastography identifies ischemia and infarction by estimating strain. Focused beams with ECG-gating offers high spatial resolution and frame rate, but precludes imaging of arrhythmic patients. Wide beam and coherent compounding can estimate strain within a single heart cycle by trading off spatial resolution or frame rate. Compounding and wide beam sequences were optimized in silico and in vivo, and then compared with a focused, ECG-gated sequence in vivo.

Collaboration


Dive into the Julien Grondin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge