Julien Pernier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julien Pernier.
Cellular and Molecular Life Sciences | 2015
Marie-France Carlier; Julien Pernier; Pierre Montaville; Shashank Shekhar; Sonja Kühn; Cytoskeleton Dynamics
Actin cytoskeleton remodeling, which drives changes in cell shape and motility, is orchestrated by a coordinated control of polarized assembly of actin filaments. Signal responsive, membrane-bound protein machineries initiate and regulate polarized growth of actin filaments by mediating transient links with their barbed ends, which elongate from polymerizable actin monomers. The barbed end of an actin filament thus stands out as a hotspot of regulation of filament assembly. It is the target of both soluble and membrane-bound agonists as well as antagonists of filament assembly. Here, we review the molecular mechanisms by which various regulators of actin dynamics bind, synergize or compete at filament barbed ends. Two proteins can compete for the barbed end via a mutually exclusive binding scheme. Alternatively, two regulators acting individually at barbed ends may be bound together transiently to terminal actin subunits at barbed ends, leading to the displacement of one by the other. The kinetics of these reactions is a key in understanding how filament length and membrane-filament linkage are controlled. It is also essential for understanding how force is produced to shape membranes by mechano-sensitive, processive barbed end tracking machineries like formins and by WASP-Arp2/3 branched filament arrays. A combination of biochemical and biophysical approaches, including bulk solution assembly measurements using pyrenyl-actin fluorescence, single filament dynamics, single molecule fluorescence imaging and reconstituted self-organized filament assemblies, have provided mechanistic insight into the role of actin polymerization in motile processes.
PLOS Biology | 2014
Pierre Montaville; Antoine Jégou; Julien Pernier; Christel Compper; Bérengère Guichard; Binyam Mogessie; Melina Schuh; Guillaume Romet-Lemonne; Marie-France Carlier
An in vitro study reveals how the three actin binding proteins profilin, formin 2, and Spire functionally cooperate by a ping-pong mechanism to regulate actin assembly during reproductive cell division.
Developmental Cell | 2016
Julien Pernier; Shashank Shekhar; Antoine Jégou; Bérengère Guichard; Marie-France Carlier
Summary Cell motility and actin homeostasis depend on the control of polarized growth of actin filaments. Profilin, an abundant regulator of actin dynamics, supports filament assembly at barbed ends by binding G-actin. Here, we demonstrate how, by binding and destabilizing filament barbed ends at physiological concentrations, profilin also controls motility, cell migration, and actin homeostasis. Profilin enhances filament length fluctuations. Profilin competes with Capping Protein at barbed ends, which generates a lower amount of profilin-actin than expected if barbed ends were tightly capped. Profilin competes with barbed end polymerases, such as formins and VopF, and inhibits filament branching by WASP-Arp2/3 complex by competition for filament barbed ends, accounting for its as-yet-unknown effects on motility and metastatic cell migration observed in this concentration range. In conclusion, profilin is a major coordinator of polarized growth of actin filaments, controlled by competition between barbed end cappers, trackers, destabilizers, and filament branching machineries.
Nature Structural & Molecular Biology | 2013
Julien Pernier; József Orbán; Balendu Sankara Avvaru; Antoine Jégou; Guillaume Romet-Lemonne; Bérengère Guichard; Marie-France Carlier
Proteins containing repeats of the WASP homology 2 (WH2) actin-binding module are multifunctional regulators of actin nucleation and assembly. The bacterial effector VopF in Vibrio cholerae, like VopL in Vibrio parahaemolyticus, is a unique homodimer of three WH2 motifs linked by a C-terminal dimerization domain. We show that only the first and third WH2 domains of VopF bind G-actin in a non-nucleating, sequestered conformation. Moreover, dimeric WH2 domains in VopF give rise to unprecedented regulation of actin assembly. Specifically, two WH2 domains on opposite protomers of VopF direct filament assembly from actin or profilin–actin by binding terminal subunits and uncapping capping protein from barbed ends by a new mechanism. Thus, VopF does not nucleate filaments by capping a pointed-end F-actin hexamer. These properties may contribute to VopF pathogenicity, and they show how dimeric WH2 peptides may mediate processive filament growth.
Nature Communications | 2015
Shashank Shekhar; Mikael Kerleau; Sonja Kühn; Julien Pernier; Guillaume Romet-Lemonne; Antoine Jégou; Marie-France Carlier
Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed.
Journal of Cell Science | 2016
Shashank Shekhar; Julien Pernier; Marie-France Carlier
ABSTRACT Cells respond to external stimuli by rapidly remodeling their actin cytoskeleton. At the heart of this function lies the intricately controlled regulation of individual filaments. The barbed end of an actin filament is the hotspot for the majority of the biochemical reactions that control filament assembly. Assays performed in bulk solution and with single filaments have enabled characterization of a plethora of barbed-end-regulating proteins. Interestingly, many of these regulators work in tandem with other proteins, which increase or decrease their affinity for the barbed end in a spatially and temporally controlled manner, often through simultaneous binding of two regulators at the barbed ends, in addition to standard mutually exclusive binding schemes. In this Cell Science at a Glance and the accompanying poster, we discuss key barbed-end-interacting proteins and the kinetic mechanisms by which they regulate actin filament assembly. We take F-actin capping protein, gelsolin, profilin and barbed-end-tracking polymerases, including formins and WH2-domain-containing proteins, as examples, and illustrate how their activity and competition for the barbed end regulate filament dynamics. Summary: Assembly of actin filaments at barbed ends drives motile processes. Here, we discuss the control of polarized filament assembly by various regulators that interact with and compete for barbed ends.
Molecular Biology of the Cell | 2017
Georgi Dimchev; Anika Steffen; Frieda Kage; Vanessa Dimchev; Julien Pernier; Marie-France Carlier; Klemens Rottner
Lamellipodia protrusion requires actin network formation driven by the Arp2/3 complex and its upstream regulators WAVE complex and Rac. Actin assembly factors of the formin and Ena/VASP families can influence protrusion, in particular by maintaining a balance between lamellipodial and cytosolic actin filament assembly.
Cytoskeleton | 2013
Marie-France Carlier; Julien Pernier; Balendu Sankara Avvaru
WH2 domains are multifunctional regulators of actin assembly that can either sequester G‐actin or allow polarized barbed end growth. They all bind similarly to a hydrophobic pocket at the barbed face of actin. Depending on their electrostatic environment, WH2 domains can nucleate actin assembly by facilitating the formation of prenuclei dimers along the canonical spontaneous assembly pathway. They also modulate filament barbed end dynamics in a versatile fashion, acting either as barbed end cappers or assisting barbed end growth like profilin or uncapping barbed ends and potentially mediating processive elongation like formins when they are dimerized. Tandem repeats of WH2 domains can sever filaments and either remain bound to created barbed ends like gelsolin, or strip off an ADP‐actin subunit from the severed polymer end, depending on their relative affinity for terminal ADP‐F‐actin or ADP‐G‐actin. In summary, WH2 domains recapitulate all known elementary regulatory functions so far found in individual actin‐binding proteins. By combining different discrete sets of these multifunctional properties, they acquire specific functions in various actin‐based processes, and participate in activities as diverse as filament branching, filopodia extension, or actin remodeling in ciliogenesis and asymmetric meiotic division. They also integrate these functions with other actin‐binding motifs present either in the same protein or in a complex with another protein, expanding the range of complexity in actin regulation. The details of their molecular mechanisms and the underlying structural basis provide exciting avenues in actin research.
Journal of Structural Biology | 2015
Balendu Sankara Avvaru; Julien Pernier; Marie-France Carlier
VopF and VopL are highly similar virulence-factors of Vibrio cholerae and Vibrio parahaemolyticus respectively that disrupt the hosts actin cytoskeleton, using a unique organization in dimerized WH2 repeats. Association of dimerized WH2 domains with the barbed face of actin confers multifunctional activities to VopF in vitro, including G-actin sequestration and filament nucleation, barbed end tracking and uncapping. Here, small angle X-ray scattering (SAXS) measurements of complexes of VopF with actin and structural modeling reveal that VopF stabilizes linear actin-strings that differ from canonical actin filament architectures but represent non-polymerizable sequestered forms of actin. The results exclude that VopL binds the pointed end of actin filaments in the template filament nucleation mechanism derived from crystallographic studies.
Cytoskeleton | 2014
Yue Jiao; Matt L. Walker; John Trinick; Julien Pernier; Pierre Montaville; Marie-France Carlier
Cordon‐Bleu (Cobl) is a regulator of actin dynamics in neural development and ciliogenesis. Its function is associated with three adjacent actin binding WASP Homology 2 (WH2) domains. We showed that these WH2 repeats confer multifunctional regulation of actin dynamics, which makes Cobl a « dynamizer » of actin assembly, inducing fast turnover of actin filaments and oscillatory polymerization regime via nucleation, severing, and rapid depolymerization activities. Cobl is the most efficient severer of actin filaments characterized so far. To understand which primary sequence elements determine the filament severing activity of the WH2 repeats, here we combine a mutagenetic/domain swapping approach of the minimal fully active Cobl‐KAB construct, which comprises the lysine rich region K preceding the two first WH2 domains A and B. The mutated Cobl constructs display variable loss of the original filament nucleating activities of native Cobl‐KAB, without any strict correlation with a loss in actin binding, which emphasizes the functional importance of the electrostatic environment of WH2 domains. Filament severing displayed the greatest stringency and was abolished in all mutated forms of Cobl‐KAB. Filament severing and re‐annealing by Cobl‐KAB, which is key in its rapid remodeling of a population of actin filaments, and most likely responsible for its function in ciliogenesis, was analyzed by electron microscopy in comparison with Spire and ADF.