Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Roux is active.

Publication


Featured researches published by Julien Roux.


PLOS Genetics | 2014

Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels.

Nicholas E. Banovich; Xun Lan; Graham McVicker; Bryce van de Geijn; Jacob F. Degner; John Blischak; Julien Roux; Jonathan K. Pritchard; Yoav Gilad

DNA methylation is an important epigenetic regulator of gene expression. Recent studies have revealed widespread associations between genetic variation and methylation levels. However, the mechanistic links between genetic variation and methylation remain unclear. To begin addressing this gap, we collected methylation data at ∼300,000 loci in lymphoblastoid cell lines (LCLs) from 64 HapMap Yoruba individuals, and genome-wide bisulfite sequence data in ten of these individuals. We identified (at an FDR of 10%) 13,915 cis methylation QTLs (meQTLs)—i.e., CpG sites in which changes in DNA methylation are associated with genetic variation at proximal loci. We found that meQTLs are frequently associated with changes in methylation at multiple CpGs across regions of up to 3 kb. Interestingly, meQTLs are also frequently associated with variation in other properties of gene regulation, including histone modifications, DNase I accessibility, chromatin accessibility, and expression levels of nearby genes. These observations suggest that genetic variants may lead to coordinated molecular changes in all of these regulatory phenotypes. One plausible driver of coordinated changes in different regulatory mechanisms is variation in transcription factor (TF) binding. Indeed, we found that SNPs that change predicted TF binding affinities are significantly enriched for associations with DNA methylation at nearby CpGs.


data integration in the life sciences | 2008

Bgee: Integrating and Comparing Heterogeneous Transcriptome Data Among Species

Frederic B. Bastian; Gilles Parmentier; Julien Roux; Sébastien Moretti; Vincent Laudet; Marc Robinson-Rechavi

Gene expression patterns are a key feature in understanding gene function, notably in development. Comparing gene expression patterns between animals is a major step in the study of gene function as well as of animal evolution. It also provides a link between genes and phenotypes. Thus we have developed Bgee, a database designed to compare expression patterns between animals, by implementing ontologies describing anatomies and developmental stages of species, and then designing homology relationships between anatomies and comparison criteria between developmental stages. To define homology relationships between anatomical features we have developed the software Homolonto, which uses a modified ontology alignment approach to propose homology relationships between ontologies. Bgee then uses these aligned ontologies, onto which heterogeneous expression data types are mapped. These already include microarrays and ESTs. Bgee is available at http://bgee.unil.ch/


PLOS Genetics | 2008

Developmental Constraints on Vertebrate Genome Evolution

Julien Roux; Marc Robinson-Rechavi

Constraints in embryonic development are thought to bias the direction of evolution by making some changes less likely, and others more likely, depending on their consequences on ontogeny. Here, we characterize the constraints acting on genome evolution in vertebrates. We used gene expression data from two vertebrates: zebrafish, using a microarray experiment spanning 14 stages of development, and mouse, using EST counts for 26 stages of development. We show that, in both species, genes expressed early in development (1) have a more dramatic effect of knock-out or mutation and (2) are more likely to revert to single copy after whole genome duplication, relative to genes expressed late. This supports high constraints on early stages of vertebrate development, making them less open to innovations (gene gain or gene loss). Results are robust to different sources of data—gene expression from microarrays, ESTs, or in situ hybridizations; and mutants from directed KO, transgenic insertions, point mutations, or morpholinos. We determine the pattern of these constraints, which differs from the model used to describe vertebrate morphological conservation (“hourglass” model). While morphological constraints reach a maximum at mid-development (the “phylotypic” stage), genomic constraints appear to decrease in a monotonous manner over developmental time.


Trends in Genetics | 2012

The genomic impact of 100 million years of social evolution in seven ant species

Jürgen Gadau; Martin Helmkampf; Sanne Nygaard; Julien Roux; Daniel F. Simola; Chris R. Smith; Garret Suen; Yannick Wurm; Christopher D. Smith

Ants (Hymenoptera, Formicidae) represent one of the most successful eusocial taxa in terms of both their geographic distribution and species number. The publication of seven ant genomes within the past year was a quantum leap for socio- and ant genomics. The diversity of social organization in ants makes them excellent model organisms to study the evolution of social systems. Comparing the ant genomes with those of the honeybee, a lineage that evolved eusociality independently from ants, and solitary insects suggests that there are significant differences in key aspects of genome organization between social and solitary insects, as well as among ant species. Altogether, these seven ant genomes open exciting new research avenues and opportunities for understanding the genetic basis and regulation of social species, and adaptive complex systems in general.


Molecular Biology and Evolution | 2014

Patterns of Positive Selection in Seven Ant Genomes

Julien Roux; Eyal Privman; Sébastien Moretti; Josephine T. Daub; Marc Robinson-Rechavi; Laurent Keller

The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide data sets in bees and flies with the same methodology to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.


Genome Research | 2011

Age-dependent gain of alternative splice forms and biased duplication explain the relation between splicing and duplication

Julien Roux; Marc Robinson-Rechavi

We analyze here the relation between alternative splicing and gene duplication in light of recent genomic data, with a focus on the human genome. We show that the previously reported negative correlation between level of alternative splicing and family size no longer holds true. We clarify this pattern and show that it is sufficiently explained by two factors. First, genes progressively gain new splice variants with time. The gain is consistent with a selectively relaxed regime, until purifying selection slows it down as aging genes accumulate a large number of variants. Second, we show that duplication does not lead to a loss of splice forms, but rather that genes with low levels of alternative splicing tend to duplicate more frequently. This leads us to reconsider the role of alternative splicing in duplicate retention.


Nucleic Acids Research | 2012

Comparative analysis of human and mouse expression data illuminates tissue-specific evolutionary patterns of miRNAs

Julien Roux; Mar Gonzàlez-Porta; Marc Robinson-Rechavi

MicroRNAs (miRNAs) constitute an important class of gene regulators. While models have been proposed to explain their appearance and expansion, the validation of these models has been difficult due to the lack of comparative studies. Here, we analyze miRNA evolutionary patterns in two mammals, human and mouse, in relation to the age of miRNA families. In this comparative framework, we confirm some predictions of previously advanced models of miRNA evolution, e.g. that miRNAs arise more frequently de novo than by duplication, or that the number of protein-coding gene targeted by miRNAs decreases with evolutionary time. We also corroborate that miRNAs display an increase in expression level with evolutionary time, however we show that this relation is largely tissue-dependent, and especially low in embryonic or nervous tissues. We identify a bias of tag-sequencing techniques regarding the assessment of breadth of expression, leading us, contrary to predictions, to find more tissue-specific expression of older miRNAs. Together, our results refine the models used so far to depict the evolution of miRNA genes. They underline the role of tissue-specific selective forces on the evolution of miRNAs, as well as the potential co-evolution patterns between miRNAs and the protein-coding genes they target.


Journal of Experimental Zoology | 2015

What to compare and how: Comparative transcriptomics for Evo-Devo

Julien Roux; Marta Rosikiewicz; Marc Robinson-Rechavi

ABSTRACT Evolutionary developmental biology has grown historically from the capacity to relate patterns of evolution in anatomy to patterns of evolution of expression of specific genes, whether between very distantly related species, or very closely related species or populations. Scaling up such studies by taking advantage of modern transcriptomics brings promising improvements, allowing us to estimate the overall impact and molecular mechanisms of convergence, constraint or innovation in anatomy and development. But it also presents major challenges, including the computational definitions of anatomical homology and of organ function, the criteria for the comparison of developmental stages, the annotation of transcriptomics data to proper anatomical and developmental terms, and the statistical methods to compare transcriptomic data between species to highlight significant conservation or changes. In this article, we review these challenges, and the ongoing efforts to address them, which are emerging from bioinformatics work on ontologies, evolutionary statistics, and data curation, with a focus on their implementation in the context of the development of our database Bgee (http://bgee.org). J. Exp. Zool. (Mol. Dev. Evol.) 324B: 372–382, 2015.


Evolution & Development | 2010

Molecular signaling in zebrafish development and the vertebrate phylotypic period

Aurélie Comte; Julien Roux; Marc Robinson-Rechavi

SUMMARY During development vertebrate embryos pass through a stage where their morphology is most conserved between species, the phylotypic period (approximately the pharyngula). To explain the resistance to evolutionary changes of this period, one hypothesis suggests that it is characterized by a high level of interactions. Based on this hypothesis, we examined protein–protein interactions, signal transduction cascades and miRNAs over the course of zebrafish development, and the conservation of expression of these genes in mouse development. We also investigated the characteristics of genes highly expressed before or during the presumed phylotypic period. We show that while there is a high diversity of interactions during the phylotypic period (protein–DNA, RNA–RNA, cell–cell, and between tissues), which is well conserved with mouse, there is no clear difference with later, more morphologically divergent, stages. We propose that the phylotypic period may rather be the expression at the morphological level of strong conservation of molecular processes earlier in development.


Bioinformatics | 2012

vHOG, a multispecies vertebrate ontology of homologous organs groups

Anne Niknejad; Aurélie Comte; Gilles Parmentier; Julien Roux; Frederic B. Bastian; Marc Robinson-Rechavi

Motivation: Most anatomical ontologies are species-specific, whereas a framework for comparative studies is needed. We describe the vertebrate Homologous Organs Groups ontology, vHOG, used to compare expression patterns between species. Results: vHOG is a multispecies anatomical ontology for the vertebrate lineage. It is based on the HOGs used in the Bgee database of gene expression evolution. vHOG version 1.4 includes 1184 terms, follows OBO principles and is based on the Common Anatomy Reference Ontology (CARO). vHOG only describes structures with historical homology relations between model vertebrate species. The mapping to species-specific anatomical ontologies is provided as a separate file, so that no homology hypothesis is stated within the ontology itself. Each mapping has been manually reviewed, and we provide support codes and references when available. Availability and implementation: vHOG is available from the Bgee download site (http://bgee.unil.ch/), as well as from the OBO Foundry and the NCBO Bioportal websites. Contact: [email protected]; [email protected]

Collaboration


Dive into the Julien Roux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederic B. Bastian

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Sébastien Moretti

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Niknejad

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélie Comte

Swiss Institute of Bioinformatics

View shared research outputs
Researchain Logo
Decentralizing Knowledge