Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Robinson-Rechavi is active.

Publication


Featured researches published by Marc Robinson-Rechavi.


Nature | 2004

Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype

Olivier Jaillon; Jean-Marc Aury; Frédéric Brunet; Jean-Louis Petit; Nicole Stange-Thomann; Evan Mauceli; Laurence Bouneau; Cécile Fischer; Catherine Ozouf-Costaz; Alain Bernot; Sophie Nicaud; David B. Jaffe; Sheila Fisher; Georges Lutfalla; Carole Dossat; Béatrice Segurens; Corinne Dasilva; Marcel Salanoubat; Michael Levy; Nathalie Boudet; Sergi Castellano; Véronique Anthouard; Claire Jubin; Vanina Castelli; Michael Katinka; Benoit Vacherie; Christian Biémont; Zineb Skalli; Laurence Cattolico; Julie Poulain

Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests ∼900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.


Nature | 2008

The amphioxus genome and the evolution of the chordate karyotype.

Nicholas H. Putnam; Thomas Butts; David E. K. Ferrier; Rebecca F. Furlong; Uffe Hellsten; Takeshi Kawashima; Marc Robinson-Rechavi; Eiichi Shoguchi; Astrid Terry; Jr-Kai Yu; E grave; lia Benito-Gutiérrez; Inna Dubchak; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Igor V. Grigoriev; Amy C. Horton; Pieter J. de Jong; Jerzy Jurka; Vladimir V. Kapitonov; Yuji Kohara; Yoko Kuroki; Erika Lindquist; Susan Lucas; Kazutoyo Osoegawa; Len A. Pennacchio; Asaf Salamov; Yutaka Satou; Tatjana Sauka-Spengler; Jeremy Schmutz

Lancelets (‘amphioxus’) are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic ∼520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.


Nature Biotechnology | 2008

Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita

Pierre Abad; Jérôme Gouzy; Jean-Marc Aury; Philippe Castagnone-Sereno; Etienne Danchin; Emeline Deleury; Laetitia Perfus-Barbeoch; Véronique Anthouard; François Artiguenave; Vivian C Blok; Marie-Cécile Caillaud; Pedro M. Coutinho; Corinne Dasilva; Francesca De Luca; Florence Deau; Magali Esquibet; Timothé Flutre; Jared V. Goldstone; Noureddine Hamamouch; Tarek Hewezi; Olivier Jaillon; Claire Jubin; Paola Leonetti; Marc Magliano; Tom Maier; Gabriel V. Markov; Paul McVeigh; Julie Poulain; Marc Robinson-Rechavi; Erika Sallet

Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall–degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.


Genome Research | 2008

The amphioxus genome illuminates vertebrate origins and cephalochordate biology

Linda Z. Holland; Ricard Albalat; Kaoru Azumi; Èlia Benito-Gutiérrez; Matthew J. Blow; Marianne Bronner-Fraser; Frédéric Brunet; Thomas Butts; Simona Candiani; Larry J. Dishaw; David E. K. Ferrier; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Carmela Gissi; Adam Godzik; Finn Hallböök; Dan Hirose; Kazuyoshi Hosomichi; Tetsuro Ikuta; Hidetoshi Inoko; Masanori Kasahara; Jun Kasamatsu; Takeshi Kawashima; Ayuko Kimura; Masaaki Kobayashi; Zbynek Kozmik; Kaoru Kubokawa; Vincent Laudet; Gary W. Litman; Alice C. McHardy

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.


Bioinformatics | 2000

RRTree: Relative-Rate Tests between groups of sequences on a phylogenetic tree

Marc Robinson-Rechavi; Dorothée Huchon

UNLABELLED RRTree is a user-friendly program for comparing substitution rates between lineages of protein or DNA sequences, relative to an outgroup, through relative rate tests. Genetic diversity is taken into account through use of several sequences, and phylogenetic relations are integrated by topological weighting. AVAILABILITY The ANSI C source code of RRTree, and compiled versions for Macintosh, MS-DOS/Windows, SUN Solaris, and CGI, are freely available at http://pbil.univ-lyon1.fr/software/rrtree.html CONTACT [email protected]


Trends in Genetics | 2001

How many nuclear hormone receptors are there in the human genome

Marc Robinson-Rechavi; Anne-Sophie Carpentier; Marilyne Duffraisse; Vincent Laudet

The sequence of the human genome now allows the definition of the complete set of genes for specific protein families in humans. Because of their involvement in many physiological and pathological processes, the nuclear hormone receptors are a superfamily of crucial medical significance. Although 48 human nuclear receptor genes were identified previously, their total number is unclear from early human genome reports. Here, we report the identification and classification of all nuclear receptor genes in the human genome, and we discuss corresponding transcriptome and proteome diversity.


Trends in Genetics | 2009

How confident can we be that orthologs are similar, but paralogs differ?

Romain A. Studer; Marc Robinson-Rechavi

Homologous genes are classified into orthologs and paralogs, depending on whether they arose by speciation or duplication. It is widely assumed that orthologs share similar functions, whereas paralogs are expected to diverge more from each other. But does this assumption hold up on further examination? We present evidence that orthologs and paralogs are not so different in either their evolutionary rates or their mechanisms of divergence. We emphasize the importance of appropriately designed studies to test models of gene evolution between orthologs and between paralogs. Thus, functional change between orthologs might be as common as between paralogs, and future studies should be designed to test the impact of duplication against this alternative model.


PLOS Genetics | 2006

Neofunctionalization in Vertebrates: The Example of Retinoic Acid Receptors

Hector Escriva; Stéphanie Bertrand; Pierre Germain; Marc Robinson-Rechavi; Muriel Umbhauer; Jérôme Cartry; Marilyne Duffraisse; Linda Z. Holland; Hinrich Gronemeyer; Vincent Laudet

Understanding the role of gene duplications in establishing vertebrate innovations is one of the main challenges of Evo-Devo (evolution of development) studies. Data on evolutionary changes in gene expression (i.e., evolution of transcription factor-cis-regulatory elements relationships) tell only part of the story; protein function, best studied by biochemical and functional assays, can also change. In this study, we have investigated how gene duplication has affected both the expression and the ligand-binding specificity of retinoic acid receptors (RARs), which play a major role in chordate embryonic development. Mammals have three paralogous RAR genes—RARα, β, and γ—which resulted from genome duplications at the origin of vertebrates. By using pharmacological ligands selective for specific paralogues, we have studied the ligand-binding capacities of RARs from diverse chordates species. We have found that RARβ-like binding selectivity is a synapomorphy of all chordate RARs, including a reconstructed synthetic RAR representing the receptor present in the ancestor of chordates. Moreover, comparison of expression patterns of the cephalochordate amphioxus and the vertebrates suggests that, of all the RARs, RARβ expression has remained most similar to that of the ancestral RAR. On the basis of these results together, we suggest that while RARβ kept the ancestral RAR role, RARα and RARγ diverged both in ligand-binding capacity and in expression patterns. We thus suggest that neofunctionalization occurred at both the expression and the functional levels to shape RAR roles during development in vertebrates.


Journal of Molecular Evolution | 2005

Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes.

Marc Robinson-Rechavi; Chris R. Gissendanner; Vincent Laudet; Ann E. Sluder

The nuclear receptor superfamily expanded in at least two episodes: one early in metazoan evolution, the second within the vertebrate lineage. An exception to this pattern is the genome of the nematode Caenorhabditis elegans, which encodes more than 270 nuclear receptors, most of them highly divergent. We generated 128 cDNA sequences for 76 C. elegans nuclear receptors, confirming that these are active genes. Among these numerous receptors are 13 orthologues of nuclear receptors found in arthropods and/or vertebrates. We show that the supplementary nuclear receptors (supnrs) originated from an explosive burst of duplications of a unique orphan receptor, HNF4. This origin has specific implications for the role of ligand binding in the function and evolution of the nematode supplementary nuclear receptors. Moreover, the supplementary nuclear receptors include a group of very rapidly evolving genes found primarily on chromosome V. We propose a model of lineage-specific duplications from a chromosome on which duplication and substitution rates are highly increased. Our results provide a framework to study nuclear receptors in nematodes, as well as to consider the functional and evolutionary consequences of lineage-specific duplications.


PLOS Computational Biology | 2012

Resolving the Ortholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function than Paralogs

Adrian M. Altenhoff; Romain A. Studer; Marc Robinson-Rechavi; Christophe Dessimoz

The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the “ortholog conjecture”, or standard model of phylogenomics, protein function changes rapidly after duplication, leading to paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of GO term frequency among species, variation of background similarity among species pairs, and propagated annotation bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model organisms such as E. coli, yeast or mouse have conserved function with human proteins.

Collaboration


Dive into the Marc Robinson-Rechavi's collaboration.

Top Co-Authors

Avatar

Vincent Laudet

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar

Julien Roux

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Frederic B. Bastian

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Moretti

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Romain A. Studer

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Anne Niknejad

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hector Escriva

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge