Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Verrax is active.

Publication


Featured researches published by Julien Verrax.


Journal of Clinical Investigation | 2008

Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice

Pierre Sonveaux; Frédérique Végran; Thies Schroeder; Melanie Wergin; Julien Verrax; Zahid N. Rabbani; Christophe De Saedeleer; Kelly M. Kennedy; Caroline Diepart; Bénédicte F. Jordan; Michael J. Kelley; Bernard Gallez; Miriam L. Wahl; Olivier Feron; Mark W. Dewhirst

Tumors contain oxygenated and hypoxic regions, so the tumor cell population is heterogeneous. Hypoxic tumor cells primarily use glucose for glycolytic energy production and release lactic acid, creating a lactate gradient that mirrors the oxygen gradient in the tumor. By contrast, oxygenated tumor cells have been thought to primarily use glucose for oxidative energy production. Although lactate is generally considered a waste product, we now show that it is a prominent substrate that fuels the oxidative metabolism of oxygenated tumor cells. There is therefore a symbiosis in which glycolytic and oxidative tumor cells mutually regulate their access to energy metabolites. We identified monocarboxylate transporter 1 (MCT1) as the prominent path for lactate uptake by a human cervix squamous carcinoma cell line that preferentially utilized lactate for oxidative metabolism. Inhibiting MCT1 with alpha-cyano-4-hydroxycinnamate (CHC) or siRNA in these cells induced a switch from lactate-fueled respiration to glycolysis. A similar switch from lactate-fueled respiration to glycolysis by oxygenated tumor cells in both a mouse model of lung carcinoma and xenotransplanted human colorectal adenocarcinoma cells was observed after administration of CHC. This retarded tumor growth, as the hypoxic/glycolytic tumor cells died from glucose starvation, and rendered the remaining cells sensitive to irradiation. As MCT1 was found to be expressed by an array of primary human tumors, we suggest that MCT1 inhibition has clinical antitumor potential.


PLOS ONE | 2012

Targeting the Lactate Transporter MCT1 in Endothelial Cells Inhibits Lactate-Induced HIF-1 Activation and Tumor Angiogenesis

Pierre Sonveaux; Tamara Copetti; Christophe De Saedeleer; Frédérique Végran; Julien Verrax; Kelly M. Kennedy; Eui Jung Moon; Suveera Dhup; Pierre Danhier; Françoise Frérart; Bernard Gallez; Anthony T. Ribeiro; Carine Michiels; Mark W. Dewhirst; Olivier Feron

Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1) pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs) thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1) that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2) and basic fibroblast growth factor (bFGF) expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.


Free Radical Biology and Medicine | 2009

Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects

Julien Verrax; Pedro Buc Calderon

Recently, it has been proposed that pharmacologic concentrations of ascorbate (vitamin C) can be reached by intravenous injection. Because high doses of ascorbate have been described to possess anticancer effects, the therapeutic potential of these concentrations has been studied, both in vitro and in vivo. By using 2-h exposures, a protocol that mimics a parenteral use, we observed that pharmacologic concentrations of ascorbate killed various cancer cell lines very efficiently (EC(50) ranging from 3 to 7 mM). The mechanism of cytotoxicity is based on the production of extracellular hydrogen peroxide and involves intracellular transition metals. In agreement with what has been previously published, our in vivo results show that both intravenous and intraperitoneal administration of ascorbate induced pharmacologic concentrations (up to 20 mM) in blood. In contrast, the concentrations reached orally remained physiological. According to pharmacokinetic data, parenteral administration of ascorbate decreased the growth rate of a murine hepatoma, whereas oral administration of the same dosage did not. We also report that pharmacologic concentrations of ascorbate did not interfere with but rather reinforced the activity of five important chemotherapeutic drugs. Taken together, these results confirm that oral and parenteral administration of ascorbate are not comparable, the latter resulting in pharmacologic concentrations of ascorbate that exhibit interesting anticancer properties.


PLOS ONE | 2012

Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells.

Christophe De Saedeleer; Tamara Copetti; Paolo E. Porporato; Julien Verrax; Olivier Feron; Pierre Sonveaux

Cancer can be envisioned as a metabolic disease driven by pressure selection and intercellular cooperativeness. Together with anaerobic glycolysis, the Warburg effect, formally corresponding to uncoupling glycolysis from oxidative phosphorylation, directly participates in cancer aggressiveness, supporting both tumor progression and dissemination. The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key contributor to glycolysis. It stimulates the expression of glycolytic transporters and enzymes supporting high rate of glycolysis. In this study, we addressed the reverse possibility of a metabolic control of HIF-1 in tumor cells. We report that lactate, the end-product of glycolysis, inhibits prolylhydroxylase 2 activity and activates HIF-1 in normoxic oxidative tumor cells but not in Warburg-phenotype tumor cells which also expressed lower basal levels of HIF-1α. These data were confirmed using genotypically matched oxidative and mitochondria-depleted glycolytic tumor cells as well as several different wild-type human tumor cell lines of either metabolic phenotype. Lactate activates HIF-1 and triggers tumor angiogenesis and tumor growth in vivo, an activity that we found to be under the specific upstream control of the lactate transporter monocarboxylate transporter 1 (MCT1) expressed in tumor cells. Because MCT1 also gates lactate-fueled tumor cell respiration and mediates pro-angiogenic lactate signaling in endothelial cells, MCT1 inhibition is confirmed as an attractive anticancer strategy in which a single drug may target multiple tumor-promoting pathways.


Biochemical Pharmacology | 2011

Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy.

Christophe Glorieux; Nicolas Dejeans; Brice Sid; Raphaël Beck; Pedro Buc Calderon; Julien Verrax

Because reactive oxygen species (ROS) are naturally produced as a consequence of aerobic metabolism, cells have developed a sophisticated set of antioxidant molecules to prevent the toxic accumulation of these species. However, compared with normal cells, malignant cells often exhibit increased levels of intracellular ROS and altered levels of antioxidant molecules. The resulting endogenous oxidative stress favors tumor growth by promoting genetic instability, cell proliferation and angiogenesis. In this context, we assessed the influence of catalase overexpression on the sensitivity of breast cancer cells towards various anticancer treatments. Our data show that catalase overexpression in MCF-7 cells leads to a 7-fold increase in catalase activity but provokes a 40% decrease in the expression of both glutathione peroxidase and peroxiredoxin II. Interestingly, proliferation and migration capacities of MCF-7 cells were impaired by the overexpression of catalase, as compared to parental cells. Regarding their sensitivity to anticancer treatments, we observed that cells overexpressing catalase were more sensitive to paclitaxel, etoposide and arsenic trioxide. However, no effect was observed on the cytotoxic response to ionizing radiations, 5-fluorouracil, cisplatin or doxorubicin. Finally, we observed that catalase overexpression protects cancer cells against the pro-oxidant combination of ascorbate and menadione, suggesting that changes in the expression of antioxidant enzymes could be a mechanism of resistance of cancer cells towards redox-based chemotherapeutic drugs.


Apoptosis | 2004

Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death.

Julien Verrax; Julie Cadrobbi; Carole Marques; Henryk Taper; Yvette Habraken; Jacques Piette; Pedro Buck Calderon

Hepatocarcinoma cells (TLT) were incubated in the presence of ascorbate and menadione, either alone or in combination. Cell death was only observed when such compounds were added simultaneously, most probably due to hydrogen peroxide (H2O2) generated by ascorbate-driven menadione redox cycling. TLT cells were particularly sensitive to such an oxidative stress due to its poor antioxidant status. DNA strand breaks were induced by this association but this process did not correspond to oligosomal DNA fragmentation (a hallmark of cell death by apoptosis). Neither caspase-3-like DEVDase activity, nor processing of procaspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP) were observed in the presence of ascorbate and menadione. Cell death induced by such an association was actively dependent on protein phosphorylation since it was totally prevented by preincubating cells with sodium orthovanadate, a tyrosine phosphatase inhibitor. Finally, while H2O2, when administered as a bolus, strongly enhances a constitutive basal NF-κB activity in TLT cells, their incubation in the presence of ascorbate and menadione results in a total abolition of such a constitutive activity.


Biochemical Pharmacology | 2013

Role of AMPK activation in oxidative cell damage: Implications for alcohol-induced liver disease

Brice Sid; Julien Verrax; Pedro Buc Calderon

Chronic alcohol consumption is a well-known risk factor for liver disease. Progression of alcohol-induced liver disease (ALD) is a multifactorial process that involves a number of genetic, nutritional and environmental factors. Experimental and clinical studies increasingly show that oxidative damage induced by ethanol contributes in many ways to the pathogenesis of alcohol hepatoxicity. Oxidative stress appears to activate AMP-activated protein kinase (AMPK) signaling system, which has emerged in recent years as a kinase that controls the redox-state and mitochondrial function. This review focuses on the most recent insights concerning the activation of AMPK by reactive oxygen species (ROS), and describes recent evidences supporting the hypothesis that AMPK signaling pathways play an important role in promoting cell viability under conditions of oxidative stress, such as during alcohol exposure. We suggest that AMPK activation by ROS can promote cell survival by inducing autophagy, mitochondrial biogenesis and expression of genes involved in antioxidant defense. Hence, increased intracellular concentrations of ROS may represent a general mechanism for enhancement of AMPK-mediated cellular adaptation, including maintenance of redox homeostasis. On the other hand, AMPK inhibition in the liver by ethanol appears to play a key role in the development of steatosis induced by chronic alcohol consumption. Although more studies are needed to assess the functions of AMPK during oxidative stress, AMPK may be a possible therapeutic target in the particular case of alcohol-induced liver disease.


PLOS ONE | 2012

Restoring Specific Lactobacilli Levels Decreases Inflammation and Muscle Atrophy Markers in an Acute Leukemia Mouse Model

Laure B. Bindels; Raphaël Beck; Olivier Schakman; Jennifer C. Martin; Fabienne De Backer; Florence Sohet; Evelyne M. Dewulf; Barbara D. Pachikian; Audrey M. Neyrinck; Jean-Paul Thissen; Julien Verrax; Pedro Buc Calderon; Bruno Pot; Corinne Grangette; Patrice D. Cani; Karen P. Scott; Nathalie M. Delzenne

The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle.


Biochemical Pharmacology | 2008

The controversial place of vitamin C in cancer treatment.

Julien Verrax; P Buc Calderon

In 2008, we celebrate the 80th anniversary of the discovery of vitamin C. Since then, we know that vitamin C possesses few pharmacological actions although it is still perceived by the public as a miracle-pill capable to heal a variety of illnesses. Cancer is one of the most common diseases for which a beneficial role of vitamin C has been claimed. Thus, its dietary use has been proposed in cancer prevention for several years. Apart from this nutritional aspect, an extensive and often confusing literature exists about the use of vitamin C in cancer that has considerably discredited its use. Nevertheless, recent pharmacokinetic data suggest that pharmacologic concentrations of vitamin C can be achieved by intravenous injections. Since these concentrations exhibit anticancer activities in vitro, this raises the controversial question of the re-evaluation of vitamin C in cancer treatment. Therefore, the purpose of this commentary is to make a critical review of our current knowledge of vitamin C, focusing on the rationale that could support its use in cancer therapy.


Free Radical Research | 2005

Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study.

Julien Verrax; Marianne Delvaux; Nelson Beghein; Henryk Taper; Bernard Gallez; Pedro Buc Calderon

Since the higher redox potential of quinone molecules has been correlated with enhanced cellular deleterious effects, we studied the ability of the association of ascorbate with several quinones derivatives (having different redox potentials) to cause cell death in K562 human leukaemia cell line. The rationale is that the reduction of quinone by ascorbate should be dependent of the quinone half-redox potential thus determining if reactive oxygen species (ROS) are formed or not, leading ultimately to cell death or cell survival. Among different ROS that may be formed during redox cycling between ascorbate and the quinone, the use of different antioxidant compounds (mannitol, desferal, N-acetylcysteine, catalase and superoxide dismutase) led to support H2O2 as the main oxidizing agent. We observed that standard redox potentials, oxygen uptake, free ascorbyl radical formation and cell survival were linked. The oxidative stress induced by the mixture of ascorbate and the different quinones decreases cellular contents of ATP and GSH while caspase-3-like activity remains unchanged. Again, we observed that quinones having higher values of half-redox potential provoke a severe depletion of ATP and GSH when they were associated with ascorbate. Such a drop in ATP content may explain the lack of activation of caspase-3. In conclusion, our results indicate that the cytotoxicity of the association quinone/ascorbate on K562 cancer cells may be predicted on the basis of half-redox potentials of quinones.

Collaboration


Dive into the Julien Verrax's collaboration.

Top Co-Authors

Avatar

Pedro Buc Calderon

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Raphaël Beck

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Christophe Glorieux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Henryk Taper

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Nicolas Dejeans

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Bernard Gallez

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Olivier Feron

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Brice Sid

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Audrey M. Neyrinck

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Evelyne M. Dewulf

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge