Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolas Dejeans is active.

Publication


Featured researches published by Nicolas Dejeans.


Biochemical Pharmacology | 2011

Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy.

Christophe Glorieux; Nicolas Dejeans; Brice Sid; Raphaël Beck; Pedro Buc Calderon; Julien Verrax

Because reactive oxygen species (ROS) are naturally produced as a consequence of aerobic metabolism, cells have developed a sophisticated set of antioxidant molecules to prevent the toxic accumulation of these species. However, compared with normal cells, malignant cells often exhibit increased levels of intracellular ROS and altered levels of antioxidant molecules. The resulting endogenous oxidative stress favors tumor growth by promoting genetic instability, cell proliferation and angiogenesis. In this context, we assessed the influence of catalase overexpression on the sensitivity of breast cancer cells towards various anticancer treatments. Our data show that catalase overexpression in MCF-7 cells leads to a 7-fold increase in catalase activity but provokes a 40% decrease in the expression of both glutathione peroxidase and peroxiredoxin II. Interestingly, proliferation and migration capacities of MCF-7 cells were impaired by the overexpression of catalase, as compared to parental cells. Regarding their sensitivity to anticancer treatments, we observed that cells overexpressing catalase were more sensitive to paclitaxel, etoposide and arsenic trioxide. However, no effect was observed on the cytotoxic response to ionizing radiations, 5-fluorouracil, cisplatin or doxorubicin. Finally, we observed that catalase overexpression protects cancer cells against the pro-oxidant combination of ascorbate and menadione, suggesting that changes in the expression of antioxidant enzymes could be a mechanism of resistance of cancer cells towards redox-based chemotherapeutic drugs.


PLOS ONE | 2011

Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice : genomic analysis of cellular targets.

Barbara D. Pachikian; Ahmed Essaghir; Jean-Baptiste Demoulin; Audrey M. Neyrinck; Emilie Catry; Fabienne De Backer; Nicolas Dejeans; Evelyne M. Dewulf; Florence Sohet; Laurence Portois; Louise Deldicque; Olivier Molendi-Coste; Isabelle Leclercq; Marc Francaux; Yvon Carpentier; Fabienne Foufelle; Giulio G. Muccioli; Patrice D. Cani; Nathalie M. Delzenne

Patients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA) ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an n-3 PUFA depleted diet (DEF) versus a control diet (CT), which only differed in the PUFA content. DEF mice exhibited hepatic insulin resistance (assessed by euglycemic-hyperinsulinemic clamp) and steatosis that was associated with a decrease in fatty acid oxidation and occurred despite a higher capacity for triglyceride secretion. Microarray and qPCR analysis of the liver tissue revealed higher expression of all the enzymes involved in lipogenesis in DEF mice compared to CT mice, as well as increased expression and activation of sterol regulatory element binding protein-1c (SREBP-1c). Our data suggest that the activation of the liver X receptor pathway is involved in the overexpression of SREBP-1c, and this phenomenon cannot be attributed to insulin or to endoplasmic reticulum stress responses. In conclusion, n-3 PUFA depletion in liver phospholipids leads to activation of SREBP-1c and lipogenesis, which contributes to hepatic steatosis.


Current Medicinal Chemistry | 2009

In situ modulation of oxidative stress: a novel and efficient strategy to kill cancer cells

Julien Verrax; R Curi Pedrosa; Raphaël Beck; Nicolas Dejeans; Henryk Taper; P Buc Calderon

Cancer cells show an up-regulation of glycolysis, they readily take up vitamin C, and they appear more susceptible to an oxidative stress than the surrounding normal cells. Here we compare, analyse and discuss these particular hallmarks by performing experiments in murine hepatomas (TLT cells) and freshly isolated mouse hepatocytes. The results show that rates of lactate formation are higher in TLT cells as compared to mouse hepatocytes, but their ATP content represents less than 25% of that in normal cells. The uptake of vitamin C is more important in hepatoma cells as compared to normal hepatocytes. This uptake mainly occurs through GLUT1 transporters. Hepatoma cells have less than 10% of antioxidant enzyme activities as compared to normal hepatocytes. This decrease includes not only the major antioxidant enzymes, namely catalase, superoxide dismutase and glutathione peroxidase, but also the GSH content. Moreover, catalase is almost not expressed in hepatoma cells as shown by western blot analysis. We explored therefore a selective exposure of cancer cells to an oxidative stress induced by pro-oxidant mixtures containing pharmacological doses of vitamin C and a redox active compound such as menadione (vitamin K(3)). Indeed, the combination of vitamin C (which accumulates in hepatoma cells) and a quinone undergoing a redox cycling (vitamin K(3)) leads to an oxidative stress that kills cancer cells in a selective manner. This differential sensitivity between cancer cells and normal cells may have important clinical applications, as it has been observed with other pro-oxidants like Arsenic trioxide, isothiocyanates, Adaphostin.


Biochemical Pharmacology | 2010

Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells

Nicolas Dejeans; Nicolas Tajeddine; Raphaël Beck; Julien Verrax; Henryk Taper; Philippe Gailly; Pedro Buc Calderon

Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells.


Free Radical Biology and Medicine | 2012

Overexpression of GRP94 in breast cancer cells resistant to oxidative stress promotes high levels of cancer cell proliferation and migration: Implications for tumor recurrence

Nicolas Dejeans; Christophe Glorieux; Samuel Guenin; Raphaël Beck; Brice Sid; Réjane Rousseau; Bettina Bisig; Philippe Delvenne; Pedro Buc Calderon; Julien Verrax

Targeting the altered redox status of cancer cells is emerging as an interesting approach to potentiate chemotherapy. However, to maximize the effectiveness of this strategy and define the correct chemotherapeutic associations, it is important to understand the biological consequences of chronically exposing cancer cells to reactive oxygen species (ROS). Using an H(2)O(2)-generating system, we selected a ROS-resistant MCF-7 breast cancer cell line, namely Resox cells. By exploring different survival pathways that are usually induced during oxidative stress, we identified a constitutive overexpression of the endoplasmic reticulum chaperone, GRP94, in these cells, whereas levels of its cytoplasmic homolog HSP90, or GRP78, were not modified. This overexpression was not mediated by constitutive unfolded protein response (UPR) activation. The increase in GRP94 is tightly linked to an increase in cell proliferation and migration capacities, as shown by GRP94-silencing experiments. Interestingly, we also observed that GRP94 silencing inhibits migration and proliferation of the highly aggressive MDA-MB-231 cells. By immunohistochemistry, we showed that GRP94 expression was higher in recurrent human breast cancers than in their paired primary neoplasias. Similar to the situation in the Resox cells, this increase was not associated with an increase in UPR activation in recurrent tumors. In conclusion, this study suggests that GRP94 overexpression may be a hallmark of aggressiveness and recurrence in breast cancers.


Anti-cancer Agents in Medicinal Chemistry | 2011

Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress.

Julien Verrax; Raphaël Beck; Nicolas Dejeans; Christophe Glorieux; Brice Sid; Rozangela Curi Pedrosa; Julio Benites; David Vásquez; Jaime A. Valderrama; Pedro Buc Calderon

Cancer cells are particularly vulnerable to treatments impairing redox homeostasis. Reactive oxygen species (ROS) can indeed play an important role in the initiation and progression of cancer, and advanced stage tumors frequently exhibit high basal levels of ROS that stimulate cell proliferation and promote genetic instability. In addition, an inverse correlation between histological grade and antioxidant enzyme activities is frequently observed in human tumors, further supporting the existence of a redox dysregulation in cancer cells. This biochemical property can be exploited by using redox-modulating compounds, which represent an interesting approach to induce cancer cell death. Thus, we have developed a new strategy based on the use of pharmacologic concentrations of ascorbate and redox-active quinones. Ascorbate-driven quinone redox cycling leads to ROS formation and provoke an oxidative stress that preferentially kill cancer cells and spare healthy tissues. Cancer cell death occurs through necrosis and the underlying mechanism implies an energetic impairment (ATP depletion) that is likely due to glycolysis inhibition. Additional mechanisms that participate to cell death include calcium equilibrium impairment and oxidative cleavage of protein chaperone Hsp90. Given the low systemic toxicity of ascorbate and the impairment of crucial survival pathways when associated with redox-active quinones, these combinations could represent an original approach that could be combined to standard cancer therapy.


Investigational New Drugs | 2011

Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

Raphaël Beck; Rozangela Curi Pedrosa; Nicolas Dejeans; Christophe Glorieux; Philippe Leveque; Bernard Gallez; Henryk Taper; Stéphane Eeckhoudt; Laurent Knoops; Pedro Buc Calderon; Julien Verrax

SummaryNumerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.


PLOS ONE | 2012

Hsp90 is cleaved by reactive oxygen species at a highly conserved N-terminal amino acid motif

Raphaël Beck; Nicolas Dejeans; Christophe Glorieux; Mélanie Creton; Edouard Delaive; Marc Dieu; Martine Raes; Philippe Leveque; Bernard Gallez; Matthieu Depuydt; Jean-François Collet; Pedro Buc Calderon; Julien Verrax

Hsp90 is an essential chaperone that is necessary for the folding, stability and activity of numerous proteins. In this study, we demonstrate that free radicals formed during oxidative stress conditions can cleave Hsp90. This cleavage occurs through a Fenton reaction which requires the presence of redox-active iron. As a result of the cleavage, we observed a disruption of the chaperoning function of Hsp90 and the degradation of its client proteins, for example, Bcr-Abl, RIP, c-Raf, NEMO and hTert. Formation of Hsp90 protein radicals on exposure to oxidative stress was confirmed by immuno-spin trapping. Using a proteomic analysis, we determined that the cleavage occurs in a conserved motif of the N-terminal nucleotide binding site, between Ile-126 and Gly-127 in Hsp90β, and between Ile-131 and Gly-132 in Hsp90α. Given the importance of Hsp90 in diverse biological functions, these findings shed new light on how oxidative stress can affect cellular homeostasis.


Biochemical Pharmacology | 2014

Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway.

Christophe Glorieux; Julien Auquier; Nicolas Dejeans; Brice Sid; Jean-Baptiste Demoulin; Luc Bertrand; Julien Verrax; Pedro Buc Calderon

Catalase is an antioxidant enzyme that catalyzes mainly the transformation of hydrogen peroxide into water and oxygen. Although catalase is frequently down-regulated in tumors the underlying mechanism remains unclear. Few transcription factors have been reported to directly bind the human catalase promoter. Among them FoxO3a has been proposed as a positive regulator of catalase expression. Therefore, we decided to study the role of the transcription factor FoxO3a and the phosphatidylinositol-3 kinase (PI3K) signaling pathway, which regulates FoxO3a, in the expression of catalase. To this end, we developed an experimental model of mammary breast MCF-7 cancer cells that acquire resistance to oxidative stress, the so-called Resox cells, in which catalase is overexpressed as compared with MCF-7 parental cell line. In Resox cells, Akt expression is decreased but its phosphorylation is enhanced when compared with MCF-7 cells. A similar profile is observed for FoxO3a, with less total protein but more phosphorylated FoxO3a in Resox cells, correlating with its higher Akt activity. The modulation of FoxO3a expression by knockdown and overexpression strategies did not affect catalase expression, neither in MCF-7 nor in Resox cells. Inhibition of PI3K and mTOR by LY295002 and rapamycin, respectively, decreases the phosphorylation of downstream targets (i.e. GSK3β and p70S6K) and leads to an increase of catalase expression only in MCF-7 but not in Resox cells. In conclusion, FoxO3a does not appear to play a critical role in the regulation of catalase expression in both cancer cells. Only MCF-7 cells are sensitive and dependent on PI3K/Akt/mTOR signaling.


Biochemical Pharmacology | 2014

AICAR induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells

Brice Sid; Christophe Glorieux; Manuel Valenzuela; Guillaume Rommelaere; Mustapha Najimi; Nicolas Dejeans; Patricia Renard; Julien Verrax; Pedro Buc Calderon

Hepatocellular carcinoma is one of the most frequent tumor types worldwide and oxidative stress represents a major risk factor in pathogenesis of liver diseases leading to HCC. Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor activated by oxidative stress that governs the expression of many genes which constitute the antioxidant defenses of the cell. In addition, oxidative stress activates AMP-activated protein kinase (AMPK), which has emerged in recent years as a kinase that controls the redox-state of the cell. Since both AMPK and Nrf2 are involved in redox homeostasis, we investigated whether there was a crosstalk between the both signaling systems in hepatocarcinoma cells. Here, we demonstrated that AMPK activator AICAR, in contrary to the A769662 allosteric activator, induces Nrf2 activation and concomitantly modulates the basal redox state of the hepatocarcinoma cells. When the expression of Nrf2 is knocked down, AICAR failed to induce its effect on redox state. These data highlight a major role of Nrf2 signaling pathway in mediating the AICAR effect on basal oxidative state. Furthermore, we demonstrated that AICAR metabolization by the cell is required to induce Nrf2 activation while, the silencing of AMPK does not have any effect on Nrf2 activation. This suggests that AICAR-induced Nrf2 activation is independent of AMPK activity. In conclusion, we identified AICAR as a potent modulator of the redox state of human hepatocarcinoma cells, via the Nrf2 signaling pathway and in an AMPK-independent mechanism.

Collaboration


Dive into the Nicolas Dejeans's collaboration.

Top Co-Authors

Avatar

Julien Verrax

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pedro Buc Calderon

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Christophe Glorieux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Raphaël Beck

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Brice Sid

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Henryk Taper

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Bernard Gallez

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Hélène Poirel

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Jean-Baptiste Demoulin

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge