Juliette Hadchouel
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Juliette Hadchouel.
Nature Genetics | 2012
Hélène Louis-Dit-Picard; Julien Barc; Daniel Trujillano; Stéphanie Miserey-Lenkei; Nabila Bouatia-Naji; Olena Pylypenko; Geneviève Beaurain; Amélie Bonnefond; Olivier Sand; Christophe Simian; Emmanuelle Vidal-Petiot; Christelle Soukaseum; Chantal Mandet; Françoise Broux; Olivier Chabre; Michel Delahousse; V. Esnault; Béatrice Fiquet; Pascal Houillier; Corinne Isnard Bagnis; Jens Koenig; Martin Konrad; Paul Landais; Chebel Mourani; Patrick Niaudet; Vincent Probst; Christel Thauvin; Robert J. Unwin; Steven D. Soroka; Georg B. Ehret
Familial hyperkalemic hypertension (FHHt) is a Mendelian form of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to increased activity of the Na+-Cl− cotransporter (NCC) in the distal nephron. Using combined linkage analysis and whole-exome sequencing in two families, we identified KLHL3 as a third gene responsible for FHHt. Direct sequencing of 43 other affected individuals revealed 11 additional missense mutations that were associated with heterogeneous phenotypes and diverse modes of inheritance. Polymorphisms at KLHL3 were not associated with blood pressure. The KLHL3 protein belongs to the BTB-BACK-kelch family of actin-binding proteins that recruit substrates for Cullin3-based ubiquitin ligase complexes. KLHL3 is coexpressed with NCC and downregulates NCC expression at the cell surface. Our study establishes a role for KLHL3 as a new member of the complex signaling pathway regulating ion homeostasis in the distal nephron and indirectly blood pressure.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Juliette Hadchouel; Christelle Soukaseum; Cara Büsst; Xiao-ou Zhou; Véronique Baudrie; Tany Zürrer; Michelle Cambillau; Jean-Luc Elghozi; Richard P. Lifton; Johannes Loffing; Xavier Jeunemaitre
Mutations in WNK1 and WNK4 lead to familial hyperkalemic hypertension (FHHt). Because FHHt associates net positive Na+ balance together with K+ and H+ renal retention, the identification of WNK1 and WNK4 led to a new paradigm to explain how aldosterone can promote either Na+ reabsorption or K+ secretion in a hypovolemic or hyperkalemic state, respectively. WNK1 gives rise to L-WNK1, an ubiquitous kinase, and KS-WNK1, a kinase-defective isoform expressed in the distal convoluted tubule. By inactivating KS-WNK1 in mice, we show here that this isoform is an important regulator of sodium transport. KS-WNK1−/− mice display an increased activity of the Na-Cl cotransporter NCC, expressed specifically in the distal convoluted tubule, where it participates in the fine tuning of sodium reabsorption. Moreover, the expression of the ROMK and BKCa potassium channels was modified in KS-WNK1−/− mice, indicating that KS-WNK1 is also a regulator of potassium transport in the distal nephron. Finally, we provide an alternative model for FHHt. Previous studies suggested that the activation of NCC plays a central role in the development of hypertension and hyperkalemia. Even though the increase in NCC activity in KS-WNK1−/− mice was less pronounced than in mice overexpressing a mutant form of WNK4, our study suggests that the activation of Na–Cl cotransporter is not sufficient by itself to induce a hyperkalemic hypertension and that the deregulation of other channels, such as the Epithelial Na+ channel (ENaC), is probably required.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Emmanuelle Vidal-Petiot; Emilie Elvira-Matelot; Kerim Mutig; Christelle Soukaseum; Véronique Baudrie; Shengnan Wu; Lydie Cheval; Elizabeth Huc; Michèle Cambillau; S. Bachmann; Alain Doucet; Xavier Jeunemaitre; Juliette Hadchouel
Significance Hypertension, one of the most common morbidity factors worldwide, is caused mostly by a deregulation of salt transport by the kidney, but underlying mechanisms remain elusive. The serine-threonine kinase With No lysine (K) 1 (WNK1) has been identified as a regulator of ion transport in the distal nephron, because its mutations cause Familial Hyperkalemic Hypertension (FHHt), a rare form of human hypertension. We generated a mouse model of WNK1-FHHt that fully recapitulates the disease and studied changes in expression of the Na+ and K+ transporters and channels involved in the maintenance of a correct blood pressure. Our study provides insights into the mechanisms underlying the pathogenesis of WNK1-FHHt and further corroborates the importance of WNK1 in ion homeostasis and blood pressure. Large deletions in the first intron of the With No lysine (K) 1 (WNK1) gene are responsible for Familial Hyperkalemic Hypertension (FHHt), a rare form of human hypertension associated with hyperkalemia and hyperchloremic metabolic acidosis. We generated a mouse model of WNK1-associated FHHt to explore the consequences of this intronic deletion. WNK1+/FHHt mice display all clinical and biological signs of FHHt. This phenotype results from increased expression of long WNK1 (L-WNK1), the ubiquitous kinase isoform of WNK1, in the distal convoluted tubule, which in turn, stimulates the activity of the Na–Cl cotransporter. We also show that the activity of the epithelial sodium channel is not altered in FHHt mice, suggesting that other mechanisms are responsible for the hyperkalemia and acidosis in this model. Finally, we observe a decreased expression of the renal outer medullary potassium channel in the late distal convoluted tubule of WNK1+/FHHt mice, which could contribute to the hyperkalemia. In summary, our study provides insights into the in vivo mechanisms underlying the pathogenesis of WNK1-mediated FHHt and further corroborates the importance of WNK1 in ion homeostasis and blood pressure.
Journal of The American Society of Nephrology | 2015
Silvana Bazúa-Valenti; María Chávez-Canales; Lorena Rojas-Vega; Xochiquetzal Gonzalez-Rodriguez; Norma Vázquez; Alejandro Rodríguez-Gama; Eduardo R. Argaiz; Zesergio Melo; Consuelo Plata; David H. Ellison; Jesus Garcia-Valdes; Juliette Hadchouel; Gerardo Gamba
It is widely recognized that the phenotype of familial hyperkalemic hypertension is mainly a consequence of increased activity of the renal Na(+)-Cl(-) cotransporter (NCC) because of altered regulation by with no-lysine-kinase 1 (WNK1) or WNK4. The effect of WNK4 on NCC, however, has been controversial because both inhibition and activation have been reported. It has been recently shown that the long isoform of WNK1 (L-WNK1) is a chloride-sensitive kinase activated by a low Cl(-) concentration. Therefore, we hypothesized that WNK4 effects on NCC could be modulated by intracellular chloride concentration ([Cl(-)]i), and we tested this hypothesis in oocytes injected with NCC cRNA with or without WNK4 cRNA. At baseline in oocytes, [Cl(-)]i was near 50 mM, autophosphorylation of WNK4 was undetectable, and NCC activity was either decreased or unaffected by WNK4. A reduction of [Cl(-)]i, either by low chloride hypotonic stress or coinjection of oocytes with the solute carrier family 26 (anion exchanger)-member 9 (SLC26A9) cRNA, promoted WNK4 autophosphorylation and increased NCC-dependent Na(+) transport in a WNK4-dependent manner. Substitution of the leucine with phenylalanine at residue 322 of WNK4, homologous to the chloride-binding pocket in L-WNK1, converted WNK4 into a constitutively autophosphorylated kinase that activated NCC, even without chloride depletion. Elimination of the catalytic activity (D321A or D321K-K186D) or the autophosphorylation site (S335A) in mutant WNK4-L322F abrogated the positive effect on NCC. These observations suggest that WNK4 can exert differential effects on NCC, depending on the intracellular chloride concentration.
Journal of The American Society of Nephrology | 2005
Juliette Hadchouel; Céline Delaloy; Sébastien Faure; Jean-Michel Achard; Xavier Jeunemaitre
Familial hyperkalemic hypertension (FHHt) syndrome ([1][1],[2][2]), also known as Gordon syndrome ([3][3]) or pseudohypoaldosteronism type 2 ([4][4]), is a rare inherited form of low-renin hypertension associated with hyperkalemia and hyperchloremic metabolic acidosis in patients with a normal GFR (
Annual Review of Physiology | 2016
Juliette Hadchouel; David H. Ellison; Gerardo Gamba
The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways. Interestingly, the modulation of NCC occurs via the phosphorylation by WNKs of other serine-threonine kinases known as SPAK-OSR1. In contrast, the process of regulating the channels is independent of SPAK-OSR1. We present a review of the remarkable advances in this area in the past 10 years.
Hypertension | 2011
Sonia Bergaya; Sébastien Faure; Véronique Baudrie; Marc Rio; Brigitte Escoubet; Philippe Bonnin; Daniel Henrion; Gervaise Loirand; Jean-Michel Achard; Xavier Jeunemaitre; Juliette Hadchouel
Gain-of-function mutations in the human WNK1 (with-no-lysine[K]1) gene are responsible for a monogenic form of arterial hypertension, and WNK1 polymorphisms have been associated with common essential hypertension. The role of WNK1 in renal ionic reabsorption has been established, but no investigation of its possible influence on vascular tone, an essential determinant of blood pressure, has been performed until now. WNK1 complete inactivation in the mouse is embryonically lethal. We, thus, examined in Wnk1+/− haploinsufficient adult mice whether WNK1 could regulate in vivo vascular tone and whether this was correlated with blood pressure variation. Wnk1+/− mice displayed a pronounced decrease in blood pressure responses in vivo and in vascular contractions ex vivo following &agr;1-adrenergic receptor activation with no change in basal blood pressure and renal function. We also observed a major loss of the pressure-induced contractile (myogenic) response in Wnk1+/− arteries associated with a specific alteration of the smooth muscle cell contractile function. These alterations in vascular tone were associated with a decreased phosphorylation level of the WNK1 substrate SPAK (STE20/SPS1-related proline/alanine-rich kinase) and its target NKCC1 (Na+-K+-2Cl− cotransporter 1) in Wnk1+/− arteries. Our study identifies a novel and major role for WNK1 in maintaining in vivo blood pressure and vasoconstriction responses specific to &agr;1-adrenergic receptor activation. Our findings uncover a vascular signaling pathway linking &agr;1-adrenergic receptors and pressure to WNK1, SPAK, and NKCC1 and may, thus, significantly broaden the comprehension of the regulatory mechanisms of vascular tone in arterial hypertension.
Hypertension | 2014
María Chávez-Canales; Chong Zhang; Christelle Soukaseum; Erika Moreno; Diana Pacheco-Alvarez; Emmanuelle Vidal-Petiot; María Castañeda-Bueno; Norma Vázquez; Lorena Rojas-Vega; Nicholas P. Meermeier; Shaunessy Rogers; Xavier Jeunemaitre; Chao Ling Yang; David H. Ellison; Gerardo Gamba; Juliette Hadchouel
The with-no-lysine (K) kinases, WNK1 and WNK4, are key regulators of blood pressure. Their mutations lead to familial hyperkalemic hypertension (FHHt), associated with an activation of the Na-Cl cotransporter (NCC). Although it is clear that WNK4 mutants activate NCC via Ste20 proline-alanine–rich kinase, the mechanisms responsible for WNK1-related FHHt and alterations in NCC activity are not as clear. We tested whether WNK1 modulates NCC through WNK4, as predicted by some models, by crossing our recently developed WNK1-FHHt mice ( WNK1 +/FHHt ) with WNK4 −/− mice. Surprisingly, the activated NCC, hypertension, and hyperkalemia of WNK1 +/FHHt mice remain in the absence of WNK4. We demonstrate that WNK1 powerfully stimulates NCC in a WNK4-independent and Ste20 proline-alanine–rich kinase–dependent manner. Moreover, WNK4 decreases the WNK1 and WNK3-mediated activation of NCC. Finally, the formation of oligomers of WNK kinases through their C-terminal coiled-coil domain is essential for their activity toward NCC. In conclusion, WNK kinases form a network in which WNK4 associates with WNK1 and WNK3 to regulate NCC. # Novelty and Significance {#article-title-34}The with-no-lysine (K) kinases, WNK1 and WNK4, are key regulators of blood pressure. Their mutations lead to familial hyperkalemic hypertension (FHHt), associated with an activation of the Na-Cl cotransporter (NCC). Although it is clear that WNK4 mutants activate NCC via Ste20 proline-alanine–rich kinase, the mechanisms responsible for WNK1-related FHHt and alterations in NCC activity are not as clear. We tested whether WNK1 modulates NCC through WNK4, as predicted by some models, by crossing our recently developed WNK1-FHHt mice (WNK1+/FHHt) with WNK4−/− mice. Surprisingly, the activated NCC, hypertension, and hyperkalemia of WNK1+/FHHt mice remain in the absence of WNK4. We demonstrate that WNK1 powerfully stimulates NCC in a WNK4-independent and Ste20 proline-alanine–rich kinase–dependent manner. Moreover, WNK4 decreases the WNK1 and WNK3-mediated activation of NCC. Finally, the formation of oligomers of WNK kinases through their C-terminal coiled-coil domain is essential for their activity toward NCC. In conclusion, WNK kinases form a network in which WNK4 associates with WNK1 and WNK3 to regulate NCC.
PLOS ONE | 2012
Emmanuelle Vidal-Petiot; Lydie Cheval; Julie Faugeroux; Thierry Malard; Alain Doucet; Xavier Jeunemaitre; Juliette Hadchouel
Mutations in the WNK1 gene, encoding a serine-threonine kinase of the WNK (With No lysine (K)) family, have been implicated in two rare human diseases, Familial Hyperkalemic Hypertension (FHHt) and Hereditary Sensory and Autonomic Neuropathy type 2 (HSAN2). Alternative promoters give rise to a ubiquitous isoform, L-WNK1, and a kidney-specific isoform, KS-WNK1. Several other isoforms are generated through alternative splicing of exons 9, 11 and 12 but their precise tissue distribution is not known. Two additional exons, 8b and HSN2, involved in HSAN2, are thought to be specifically expressed in the nervous system. The purpose of this study was to establish an exhaustive description of all WNK1 isoforms and to quantify their relative level of expression in a panel of human and mouse tissues and in mouse nephron segments. For the latter purpose, we developed a new methodology allowing the determination of the proportions of the different isoforms generated by alternative splicing. Our results evidenced a striking tissue-specific distribution of the different isoforms and the unexpected presence of exon HSN2 in many tissues other than the nervous system. We also found exon 26 to be alternatively spliced in human and identified two new exons, 26a and 26b, within intron 26, specifically expressed in nervous tissues both in humans and mice. WNK1 should therefore no longer be designated as a 28- but as a 32-exon gene, with 8 of them - 8b, HSN2, 9, 11, 12, 26, 26a and 26b - alternatively spliced in a tissue-specific manner. These tissue-specific isoforms must be considered when studying the different roles of this ubiquitous kinase.
Hypertension | 2008
Céline Delaloy; Emilie Elvira-Matelot; Maud Clemessy; Xiao-ou Zhou; Martine Imbert-Teboul; Anne-Marie Houot; Xavier Jeunemaitre; Juliette Hadchouel
Large deletions in intron 1 of the with-no-lysine kinase type 1 (WNK1) gene cause familial hyperkalemic hypertension. Alternative promoters generate functionally different isoforms: long ubiquitous isoforms (L-WNK1) and a kidney-specific isoform (KS-WNK1) lacking kinase activity. It remains unclear whether the disease-causing mutations selectively modify the synthesis of 1 or both types of isoforms. Using a transgenic mouse model, we found that intron 1 deletion resulted in the overexpression of L- and KS-WNK1 in the distal convoluted tubule and ubiquitous ectopic KS-WNK1 expression. Phylogenetic and functional analysis of the minimal 22-kb intron 1 deletion identified 1 repressor and 1 insulator, potentially preventing interactions between the regulatory elements of L-WNK1 and KS-WNK1. These results provide the first insight into the molecular mechanisms of WNK1-induced familial hyperkalemic hypertension.