Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Castañeda-Bueno is active.

Publication


Featured researches published by María Castañeda-Bueno.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Activation of the renal Na+:Cl− cotransporter by angiotensin II is a WNK4-dependent process

María Castañeda-Bueno; Luz Graciela Cervantes-Pérez; Norma Vázquez; Norma Uribe; Sheila Kantesaria; Luciana Morla; Norma A. Bobadilla; Alain Doucet; Dario R. Alessi; Gerardo Gamba

Pseudohypoaldosteronism type II is a salt-sensitive form of hypertension with hyperkalemia in humans caused by mutations in the with-no-lysine kinase 4 (WNK4). Several studies have shown that WNK4 modulates the activity of the renal Na+Cl− cotransporter, NCC. Because the renal consequences of WNK4 carrying pseudoaldosteronism type II mutations resemble the response to intravascular volume depletion (promotion of salt reabsorption without K+ secretion), a condition that is associated with high angiotensin II (AngII) levels, it has been proposed that AngII signaling might affect WNK4 modulation of the NCC. In Xenopus laevis oocytes, WNK4 is required for modulation of NCC activity by AngII. To demonstrate that WNK4 is required in the AngII-mediated regulation of NCC in vivo, we used a total WNK4-knockout mouse strain (WNK4−/−). WNK4 mRNA and protein expression were absent in WNK4−/− mice, which exhibited a mild Gitelman-like syndrome, with normal blood pressure, increased plasma renin activity, and reduced NCC expression and phosphorylation at T-58. Immunohistochemistry revealed normal morphology of the distal convoluted tubule with reduced NCC expression. Low-salt diet or infusion of AngII for 4 d induced phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and of NCC at S-383 and T-58, respectively, in WNK4+/+ but not WNK4−/− mice. Thus, the absence of WNK4 in vivo precludes NCC and SPAK phosphorylation promoted by a low-salt diet or AngII infusion, suggesting that AngII action on the NCC occurs via a WNK4-SPAK–dependent signaling pathway. Additionally, stimulation of aldosterone secretion by AngII, but not by a high-K+ diet, was impaired in WNK4−/− mice.


Cell Metabolism | 2013

Mineralocorticoid Receptor Phosphorylation Regulates Ligand Binding and Renal Response to Volume Depletion and Hyperkalemia

Shigeru Shibata; Jesse Rinehart; Junhui Zhang; Gilbert W. Moeckel; María Castañeda-Bueno; Amy L. Stiegler; Titus J. Boggon; Gerardo Gamba; Richard P. Lifton

Nuclear receptors are transcription factors that regulate diverse cellular processes. In canonical activation, ligand availability is sufficient to produce receptor binding, entraining downstream signaling. The mineralocorticoid receptor (MR) is normally activated by aldosterone, which is produced in both volume depletion and hyperkalemia, states that require different homeostatic responses. We report phosphorylation at S843 in the MR ligand-binding domain that prevents ligand binding and activation. In kidney, MR(S843-P) is found exclusively in intercalated cells of the distal nephron. In volume depletion, angiotensin II and WNK4 signaling decrease MR(S843-P) levels, whereas hyperkalemia increases MR(S843-P). Dephosphorylation of MR(S843-P) results in aldosterone-dependent increases of the intercalated cell apical proton pump and Cl(-)/HCO3(-) exchangers, increasing Cl(-) reabsorption and promoting increased plasma volume while inhibiting K(+) secretion. These findings reveal a mechanism regulating nuclear hormone receptor activity and implicate selective MR activation in intercalated cells in the distinct adaptive responses to volume depletion and hyperkalemia.


Journal of Biological Chemistry | 2011

Activation of the bumetanide-sensitive NA+,K+,2CL--cotransporter NKCC2 is facilitated by Tamm-Horsfall protein in a chloride-sensitive manner

Kerim Mutig; Thomas Kahl; Turgay Saritas; Michael Godes; Pontus B. Persson; James Bates; Hajamohideen Raffi; Luca Rampoldi; Shinichi Uchida; Carsten Hille; Carsten Dosche; Satish Kumar; María Castañeda-Bueno; Gerardo Gamba; S. Bachmann

Active transport of NaCl across thick ascending limb (TAL) epithelium is accomplished by Na+,K+,2Cl− cotransporter (NKCC2). The activity of NKCC2 is determined by vasopressin (AVP) or intracellular chloride concentration and includes its amino-terminal phosphorylation. Co-expressed Tamm-Horsfall protein (THP) has been proposed to interact with NKCC2. We hypothesized that THP modulates NKCC2 activity in TAL. THP-deficient mice (THP−/−) showed an increased abundance of intracellular NKCC2 located in subapical vesicles (+47% compared with wild type (WT) mice), whereas base-line phosphorylation of NKCC2 was significantly decreased (−49% compared with WT mice), suggesting reduced activity of the transporter in the absence of THP. Cultured TAL cells with low endogenous THP levels and low base-line phosphorylation of NKCC2 displayed sharp increases in NKCC2 phosphorylation (+38%) along with a significant change of intracellular chloride concentration upon transfection with THP. In NKCC2-expressing frog oocytes, co-injection with THP cRNA significantly enhanced the activation of NKCC2 under low chloride hypotonic stress (+112% versus +235%). Short term (30 min) stimulation of the vasopressin V2 receptor pathway by V2 receptor agonist (deamino-cis-d-Arg vasopressin) resulted in enhanced NKCC2 phosphorylation in WT mice and cultured TAL cells transfected with THP, whereas in the absence of THP, NKCC2 phosphorylation upon deamino-cis-d-Arg vasopressin was blunted in both systems. Attenuated effects of furosemide along with functional and structural adaptation of the distal convoluted tubule in THP−/− mice supported the notion that NaCl reabsorption was impaired in TAL lacking THP. In summary, these results are compatible with a permissive role for THP in the modulation of NKCC2-dependent TAL salt reabsorptive function.


Neurobiology of Learning and Memory | 2008

Long-term exposure to environmental enrichment since youth prevents recognition memory decline and increases synaptic plasticity markers in aging.

María Castañeda-Bueno; Ricardo Quiroz-Baez; Clorinda Arias

Aging-associated brain changes include functional alterations that are usually related with memory decline. Epidemiological reports show that a physically and intellectually active life provides a protective effect on this decline and delays the onset of several neurodegenerative diseases. The cellular mechanisms behind the behavioral-based therapies, such as environmental enrichment (EE) exposure, as a method for alleviating age-related memory impairments, are still unknown. Although some reports have shown the benefits of EE exposure in cognitive outcomes in old mice and in animals with experimental neurodegenerative conditions, the effects of lifelong animal exposure to EE have not been explored in detail. In the present work we tested in a rat model the effects of intermittent lifelong exposure since youth to EE on behavioral performance, object recognition memory and anxiety level, as well as on some morphological and biochemical markers of brain plasticity such as hippocampal neurogenesis, synaptophysin content and synaptic morphology. We found that environmental factors have a positive impact on short-memory preservation, as well as on the maintenance of synapses and in the increase in number of new generated neurons within the hippocampus during aging.


American Journal of Physiology-renal Physiology | 2014

Modulation of NCC activity by low and high K+ intake: Insights into the signaling pathways involved

María Castañeda-Bueno; Luz Graciela Cervantes-Pérez; Lorena Rojas-Vega; Isidora Arroyo-Garza; Norma Vázquez; Erika Moreno; Gerardo Gamba

Modulation of Na+-Cl− cotransporter (NCC) activity is essential to adjust K+ excretion in the face of changes in dietary K+ intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K+ diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K+-citrate diets for 4 days. The low-K+ diet decreased and high-K+ diet increased plasma aldosterone levels, but both diets were associated with increased phosphorylation of NCC (phospho-NCC, Thr44/Thr48/Thr53) and phosphorylation of SPAK/oxidative stress responsive kinase 1 (phospho-SPAK/OSR1, Ser383/Ser325). The effect of the low-K+ diet on SPAK phosphorylation persisted in WNK4 knockout and SPAK knockin mice, whereas the effects of ANG II on NCC and SPAK were lost in both mouse colonies. This suggests that for NCC activation by ANG II, integrity of the WNK4/SPAK pathway is required, whereas for the low-K+ diet, SPAK phosphorylation occurred despite the absence of WNK4, suggesting the involvement of another WNK (WNK1 or WNK3). Additionally, because NCC activation also occurred in SPAK knockin mice, it is possible that loss of SPAK was compensated by OSR1. The positive effect of the high-K+ diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K+-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K+ increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K+ diet.


Hypertension | 2014

WNK-SPAK-NCC Cascade Revisited WNK1 Stimulates the Activity of the Na-Cl Cotransporter via SPAK, an Effect Antagonized by WNK4

María Chávez-Canales; Chong Zhang; Christelle Soukaseum; Erika Moreno; Diana Pacheco-Alvarez; Emmanuelle Vidal-Petiot; María Castañeda-Bueno; Norma Vázquez; Lorena Rojas-Vega; Nicholas P. Meermeier; Shaunessy Rogers; Xavier Jeunemaitre; Chao Ling Yang; David H. Ellison; Gerardo Gamba; Juliette Hadchouel

The with-no-lysine (K) kinases, WNK1 and WNK4, are key regulators of blood pressure. Their mutations lead to familial hyperkalemic hypertension (FHHt), associated with an activation of the Na-Cl cotransporter (NCC). Although it is clear that WNK4 mutants activate NCC via Ste20 proline-alanine–rich kinase, the mechanisms responsible for WNK1-related FHHt and alterations in NCC activity are not as clear. We tested whether WNK1 modulates NCC through WNK4, as predicted by some models, by crossing our recently developed WNK1-FHHt mice ( WNK1 +/FHHt ) with WNK4 −/− mice. Surprisingly, the activated NCC, hypertension, and hyperkalemia of WNK1 +/FHHt mice remain in the absence of WNK4. We demonstrate that WNK1 powerfully stimulates NCC in a WNK4-independent and Ste20 proline-alanine–rich kinase–dependent manner. Moreover, WNK4 decreases the WNK1 and WNK3-mediated activation of NCC. Finally, the formation of oligomers of WNK kinases through their C-terminal coiled-coil domain is essential for their activity toward NCC. In conclusion, WNK kinases form a network in which WNK4 associates with WNK1 and WNK3 to regulate NCC. # Novelty and Significance {#article-title-34}The with-no-lysine (K) kinases, WNK1 and WNK4, are key regulators of blood pressure. Their mutations lead to familial hyperkalemic hypertension (FHHt), associated with an activation of the Na-Cl cotransporter (NCC). Although it is clear that WNK4 mutants activate NCC via Ste20 proline-alanine–rich kinase, the mechanisms responsible for WNK1-related FHHt and alterations in NCC activity are not as clear. We tested whether WNK1 modulates NCC through WNK4, as predicted by some models, by crossing our recently developed WNK1-FHHt mice (WNK1+/FHHt) with WNK4−/− mice. Surprisingly, the activated NCC, hypertension, and hyperkalemia of WNK1+/FHHt mice remain in the absence of WNK4. We demonstrate that WNK1 powerfully stimulates NCC in a WNK4-independent and Ste20 proline-alanine–rich kinase–dependent manner. Moreover, WNK4 decreases the WNK1 and WNK3-mediated activation of NCC. Finally, the formation of oligomers of WNK kinases through their C-terminal coiled-coil domain is essential for their activity toward NCC. In conclusion, WNK kinases form a network in which WNK4 associates with WNK1 and WNK3 to regulate NCC.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation

Shigeru Shibata; Juan Pablo Arroyo; María Castañeda-Bueno; Jeremy Puthumana; Junhui Zhang; Shunya Uchida; Kathryn L. Stone; TuKiet T. Lam; Richard P. Lifton

Significance Aldosterone produces distinct adaptive responses in volume depletion and hyperkalemia. Mutations in with-no-lysine (WNK) kinases or ubiquitin ligases containing Cullin 3 (CUL3) and Kelch-like 3 (KLHL3) cause a Mendelian disease featuring hypertension and hyperkalemia due to constitutive renal salt reabsorption and inhibited K+ secretion. WNKs modulate activities of aldosterone-regulated electrolyte flux pathways, and WNK levels are regulated by CUL3/KLHL3; disease-causing mutations prevent WNK degradation. This manuscript shows that angiotensin II (AII), a hormone produced only in volume depletion, induces PKC-mediated phosphorylation of KLHL3, preventing WNK degradation and phenocopying KLHL3 mutations. These findings provide a mechanism by which AII signaling alters WNK4, promoting increased renal salt reabsorption and reduced K+ secretion. Hypertension contributes to the global burden of cardiovascular disease. Increased dietary K+ reduces blood pressure; however, the mechanism has been obscure. Human genetic studies have suggested that the mechanism is an obligatory inverse relationship between renal salt reabsorption and K+ secretion. Mutations in the kinases with-no-lysine 4 (WNK4) or WNK1, or in either Cullin 3 (CUL3) or Kelch-like 3 (KLHL3)—components of an E3 ubiquitin ligase complex that targets WNKs for degradation—cause constitutively increased renal salt reabsorption and impaired K+ secretion, resulting in hypertension and hyperkalemia. The normal mechanisms that regulate the activity of this ubiquitin ligase and levels of WNKs have been unknown. We posited that missense mutations in KLHL3 that impair binding of WNK4 might represent a phenocopy of the normal physiologic response to volume depletion in which salt reabsorption is maximized. We show that KLHL3 is phosphorylated at serine 433 in the Kelch domain (a site frequently mutated in hypertension with hyperkalemia) by protein kinase C in cultured cells and that this phosphorylation prevents WNK4 binding and degradation. This phosphorylation can be induced by angiotensin II (AII) signaling. Consistent with these in vitro observations, AII administration to mice, even in the absence of volume depletion, induces renal KLHL3S433 phosphorylation and increased levels of both WNK4 and the NaCl cotransporter. Thus, AII, which is selectively induced in volume depletion, provides the signal that prevents CUL3/KLHL3-mediated degradation of WNK4, directing the kidney to maximize renal salt reabsorption while inhibiting K+ secretion in the setting of volume depletion.


Journal of Hypertension | 2013

Insulin Increases the Functional Activity of the Renal NaCl cotransporter

María Chávez-Canales; Juan Pablo Arroyo; Benajmin Ko; Norma Vázquez; Rocio Bautista; María Castañeda-Bueno; Norma A. Bobadilla; Robert S. Hoover; Gerardo Gamba

Objectives: Insulin is recognized to increase renal salt reabsorption in the distal nephron and hyperinsulinemic states have been shown to be associated with increased expression of the renal NaCl cotransporter (NCC). However, the effect of insulin on NCC functional activity has not been reported. Methods: Using a heterologous expression system of Xenopus laevis oocytes, a mouse distal convoluted cell line, mDCT15 cells, endogenously expressing NCC, and an ex-vivo kidney perfusion technique, we assessed the effect of insulin on the activity and phosphorylation of NCC. The signaling pathway involved was analyzed. Results: In Xenopus oocytes insulin increases the activity of NCC together with its phosphorylation at threonine residue 58. Activation of NCC by insulin was also observed in mDCT15 cells. Additionally, insulin increased the NCC phosphorylation in kidney under the ex-vivo perfusion technique. In oocytes and mDCT15 cells, insulin effect on NCC was prevented with inhibitors of phosphatidylinositol 3-kinase (PI3K), mTORC2, and AKT1 kinases, but not by inhibitors of MAP or mTORC1 kinases, suggesting that PI3K-mTORC2-AKT1 is the intracellular pathway required. Additionally, activation of NCC by insulin was not affected by wild-type or mutant versions of with no lysine kinase 1, with no lysine kinase 4, or serum glucocorticoid kinase 1, but it was no longer observed in the presence of wild-type or the dominant negative, catalytically inactive with no lysine kinase 3, implicating this kinase in the process. Conclusion: Insulin induces activation and phosphorylation of NCC. This effect could play an important role in arterial hypertension associated with hyperinsulinemic states, such as obesity, metabolic syndrome, or type 2 diabetes mellitus.


Cellular Physiology and Biochemistry | 2012

WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family.

Diana Pacheco-Alvarez; Norma Vázquez; María Castañeda-Bueno; Paola de-los-Heros; Cesar Cortés-González; Erika Selene Vargas Moreno; Patricia Meade; Norma A. Bobadilla; Gerardo Gamba

The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl- influx and prevent Cl- efflux, thus fitting the profile for a putative “Cl--sensing kinase”. The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 (241, 872, 1336RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation.


Current Opinion in Nephrology and Hypertension | 2012

Mechanisms of sodium-chloride cotransporter modulation by angiotensin II.

María Castañeda-Bueno; Gerardo Gamba

Purpose of reviewThe renin–angiotensin–aldosterone system is an important modulator of renal salt excretion and arterial pressure. An important body of evidence now supports that angiotensin II (AngII) modulates the function of the renal sodium–chloride cotransporter (NCC), independently of aldosterone. Here we summarize these data, as well as recent knowledge regarding the intracellular mechanisms underlying this effect. Recent findingsAngII has the ability to modulate NCC total expression, apical localization, and phosphorylation by aldosterone-independent mechanisms. Recent evidence suggests that these effects are achieved through modulation of the With No Lysine kinase 4 (WNK4) and Ste20-related, proline–alanine-rich kinase (SPAK) pathway. Missense mutations in the acidic domain of WNK4, which are the cause of one of the subtypes of pseudohypoaldosteronism type II (PHAII), could be mimicking the effect produced by AngII on NCC through the WNK4–SPAK pathway. WNK4 activity has been shown to vary in response to changes in calcium concentration and PHAII-WNK4 mutants apparently lose this ability. Thus, AngII may regulate WNK4 activity through the modulation of intracellular calcium concentration. SummaryModulation of WNK4 activity by AngII underlies the effects of AngII on NCC activity and this is probably important for the stimulation of renal sodium retention, as well as for the prevention of potassium loss, during hypovolemia.

Collaboration


Dive into the María Castañeda-Bueno's collaboration.

Top Co-Authors

Avatar

Gerardo Gamba

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Norma Vázquez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Norma A. Bobadilla

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Moreno

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Lorena Rojas-Vega

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luz Graciela Cervantes-Pérez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

María Chávez-Canales

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Silvana Bazúa-Valenti

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge