Marina Caskey
Rockefeller University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marina Caskey.
Journal of Experimental Medicine | 2009
M. Paula Longhi; Christine Trumpfheller; Juliana Idoyaga; Marina Caskey; Ines Matos; Courtney Kluger; Andres M. Salazar; Marco Colonna; Ralph M. Steinman
Relative to several other toll-like receptor (TLR) agonists, we found polyinosinic:polycytidylic acid (poly IC) to be the most effective adjuvant for Th1 CD4+ T cell responses to a dendritic cell (DC)–targeted HIV gag protein vaccine in mice. To identify mechanisms for adjuvant action in the intact animal and the polyclonal T cell repertoire, we found poly IC to be the most effective inducer of type I interferon (IFN), which was produced by DEC-205+ DCs, monocytes, and stromal cells. Antibody blocking or deletion of type I IFN receptor showed that IFN was essential for DC maturation and development of CD4+ immunity. The IFN-AR receptor was directly required for DCs to respond to poly IC. STAT 1 was also essential, in keeping with the type I IFN requirement, but not type II IFN or IL-12 p40. Induction of type I IFN was mda5 dependent, but DCs additionally used TLR3. In bone marrow chimeras, radioresistant and, likely, nonhematopoietic cells were the main source of IFN, but mda5 was required in both marrow–derived and radioresistant host cells for adaptive responses. Therefore, the adjuvant action of poly IC requires a widespread innate type I IFN response that directly links antigen presentation by DCs to adaptive immunity.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Christine Trumpfheller; Marina Caskey; Godwin Nchinda; Maria Paula Longhi; Olga Mizenina; Yaoxing Huang; Sarah J. Schlesinger; Marco Colonna; Ralph M. Steinman
CD4+ Th1 type immunity is implicated in resistance to global infectious diseases. To improve the efficacy of T cell immunity induced by human immunodeficiency virus (HIV) vaccines, we are developing a protein-based approach that directly harnesses the function of dendritic cells (DCs) in intact lymphoid tissues. Vaccine proteins are selectively delivered to DCs by antibodies to DEC-205/CD205, a receptor for antigen presentation. We find that polyriboinosinic:polyribocytidylic acid (poly IC) independently serves as an adjuvant to allow a DC-targeted protein to induce protective CD4+ T cell responses at a mucosal surface, the airway. After two doses of DEC-targeted, HIV gag p24 along with poly IC, responder CD4+ T cells have qualitative features that have been correlated with protective function. The T cells simultaneously make IFN-γ, tumor necrosis factor (TNF)-α, and IL-2, and in high amounts for prolonged periods. The T cells also proliferate and continue to secrete IFN-γ in response to HIV gag p24. The adjuvant role of poly IC requires Toll-like receptor (TLR) 3 and melanoma differentiation-associated gene-5 (MDA5) receptors, but its analog poly IC12U requires only TLR3. We suggest that poly IC be tested as an adjuvant with DC-targeted vaccines to induce numerous multifunctional CD4+ Th1 cells with proliferative capacity.
Journal of Experimental Medicine | 2011
Marina Caskey; François Lefebvre; Abdelali Filali-Mouhim; Mark J. Cameron; Jean-Philippe Goulet; Elias K. Haddad; Gaëlle Breton; Christine Trumpfheller; Sarah Pollak; Irina Shimeliovich; Angela Duque-Alarcon; Li Pan; Annette Nelkenbaum; Andres M. Salazar; Sarah J. Schlesinger; Ralph M. Steinman; Rafick Pierre Sekaly
As shown by transcriptional analysis of blood samples from human volunteers, injection with synthetic dsRNA (an agonist of the TLR3 and MDA5 pattern recognition receptors) triggered up-regulation of genes involved in innate immune pathways, similar to those induced by vaccination with the efficacious yellow fever vaccine.
Cell | 2015
Lillian B. Cohn; Israel T. Silva; Thiago Y. Oliveira; Rafael A. Rosales; Erica H. Parrish; Gerald H. Learn; Beatrice H. Hahn; Julie L. Czartoski; M. Juliana McElrath; Clara Lehmann; Florian Klein; Marina Caskey; Bruce D. Walker; Janet D. Siliciano; Robert F. Siliciano; Mila Jankovic; Michel C. Nussenzweig
The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.
PLOS ONE | 2011
Sandhya Vasan; Arlene Hurley; Sarah J. Schlesinger; Drew Hannaman; David F. Gardiner; Daniel Dugin; Mar Boente-Carrera; Roselle Vittorino; Marina Caskey; Johanne Andersen; Yaoxing Huang; Josephine H. Cox; Tony Tarragona-Fiol; Dilbinder K. Gill; Hannah Cheeseman; Lorna Clark; Len Dally; Carol Smith; Claudia Schmidt; Harriet Park; Jakub Kopycinski; Jill Gilmour; Patricia Fast; Robert M. Bernard; David D. Ho
Background DNA-based vaccines have been safe but weakly immunogenic in humans to date. Methods and Findings We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP) in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines. Conclusions This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate. Trial Registration ClinicalTrials.gov NCT00545987
Nature | 2016
Johannes F. Scheid; Joshua A. Horwitz; Yotam Bar-On; Edward F. Kreider; Ching Lan Lu; Julio C. C. Lorenzi; Anna Feldmann; Malte Braunschweig; Lilian Nogueira; Thiago Y. Oliveira; Irina Shimeliovich; Roshni Patel; Leah A. Burke; Yehuda Z. Cohen; Sonya Hadrigan; Allison Settler; Maggi Witmer-Pack; Anthony P. West; Boris Juelg; Tibor Keler; Thomas Hawthorne; Barry Zingman; Roy M. Gulick; Nico Pfeifer; Gerald H. Learn; Michael S. Seaman; Pamela J. Bjorkman; Florian Klein; Sarah J. Schlesinger; Bruce D. Walker
Interruption of combination antiretroviral therapy (ART) in HIV-1-infected individuals leads to rapid viral rebound. Here we report the results of a phase IIa open label clinical trial evaluating 3BNC117, a broad and potent neutralizing antibody (bNAb) against the CD4 binding site of HIV-1 Env, in the setting of analytical treatment interruption (ATI) in 13 HIV-1-infected individuals. Participants with 3BNC117-sensitive virus outgrowth cultures were enrolled. Two or four 30 mg/kg infusions of 3BNC117, separated by 3 or 2 weeks, respectively, were generally well tolerated. The infusions were associated with a delay in viral rebound for 5-9 weeks after 2 infusions, and up to 19 weeks after 4 infusions, or an average of 6.7 and 9.9 weeks respectively, compared with 2.6 weeks for historical controls (p=<1e-5). Rebound viruses arose predominantly from a single provirus. In most individuals, emerging viruses showed increased resistance indicating escape. However, 30% of participants remained suppressed until antibody concentrations waned below 20 μg/ml, and the viruses emerging in all but one of these individuals showed no apparent resistance to 3BCN117, suggesting failure to escape over a period of 9-19 weeks. We conclude that administration of 3BNC117 exerts strong selective pressure on HIV-1 emerging from latent reservoirs during ATI in humans.
Journal of Internal Medicine | 2012
Christine Trumpfheller; Maria Paula Longhi; Marina Caskey; Juliana Idoyaga; Leonia Bozzacco; T. Keler; Sarah J. Schlesinger; Ralph M. Steinman
Abstract. Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM (The Rockefeller University, New York, NY; and Celldex Therapeutics, Phillipsburg, NJ; USA). Dendritic cell‐targeted protein vaccines: a novel approach to induce T‐cell immunity (Review). J Intern Med 2012; 271: 183–192.
Nature Medicine | 2017
Marina Caskey; Till Schoofs; Henning Gruell; Allison Settler; Theodora Karagounis; Edward F. Kreider; Ben Murrell; Nico Pfeifer; Lilian Nogueira; Thiago Y. Oliveira; Gerald H. Learn; Yehuda Z. Cohen; Clara Lehmann; Daniel Gillor; Irina Shimeliovich; Cecilia Unson-O'Brien; Daniela Weiland; Alexander Robles; Tim Kümmerle; Christoph Wyen; Rebeka Levin; Maggi Witmer-Pack; Kemal Eren; Caroline C. Ignacio; Szilard Kiss; Anthony P. West; Hugo Mouquet; Barry Zingman; Roy M. Gulick; Tibor Keler
Monoclonal antibody 10-1074 targets the V3 glycan supersite on the HIV-1 envelope (Env) protein. It is among the most potent anti-HIV-1 neutralizing antibodies isolated so far. Here we report on its safety and activity in 33 individuals who received a single intravenous infusion of the antibody. 10-1074 was well tolerated and had a half-life of 24.0 d in participants without HIV-1 infection and 12.8 d in individuals with HIV-1 infection. Thirteen individuals with viremia received the highest dose of 30 mg/kg 10-1074. Eleven of these participants were 10-1074-sensitive and showed a rapid decline in viremia by a mean of 1.52 log10 copies/ml. Virologic analysis revealed the emergence of multiple independent 10-1074-resistant viruses in the first weeks after infusion. Emerging escape variants were generally resistant to the related V3-specific antibody PGT121, but remained sensitive to antibodies targeting nonoverlapping epitopes, such as the anti-CD4-binding-site antibodies 3BNC117 and VRC01. The results demonstrate the safety and activity of 10-1074 in humans and support the idea that antibodies targeting the V3 glycan supersite might be useful for the treatment and prevention of HIV-1 infection.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Julio C. C. Lorenzi; Yehuda Z. Cohen; Lillian B. Cohn; Edward F. Kreider; John P. Barton; Gerald H. Learn; Thiago Y. Oliveira; Christy L. Lavine; Joshua A. Horwitz; Allison Settler; Mila Jankovic; Michael S. Seaman; Arup K. Chakraborty; Beatrice H. Hahn; Marina Caskey; Michel C. Nussenzweig
Significance A reservoir of latently infected cells poses the greatest challenge to HIV-1 eradication. Efforts to develop strategies to eliminate the reservoir have been hampered, in part, by the lack of a precise understanding of the cellular and molecular nature of this reservoir. We describe a new method to analyze the replication-competent latent reservoir quantitatively and qualitatively. We find that over 50% of the replication-competent viruses in the reservoir form part of groups with identical env sequences. However, a negative correlation exists between integrated proviral clones and replication-competent viruses, such that the larger the proviral clone, the lower is its probability of representing a replication-competent virus. HIV-1–infected individuals harbor a latent reservoir of infected CD4+ T cells that is not eradicated by antiretroviral therapy (ART). This reservoir presents the greatest barrier to an HIV-1 cure and has remained difficult to characterize, in part, because the vast majority of integrated sequences are defective and incapable of reactivation. To characterize the replication-competent reservoir, we have combined two techniques, quantitative viral outgrowth and qualitative sequence analysis of clonal outgrowth viruses. Leukapheresis samples from four fully ART-suppressed, chronically infected individuals were assayed at two time points separated by a 4- to 6-mo interval. Overall, 54% of the viruses emerging from the latent reservoir showed gp160 env sequences that were identical to at least one other virus. Moreover, 43% of the env sequences from viruses emerging from the reservoir were part of identical groups at the two time points. Groups of identical expanded sequences made up 54% of proviral DNA, and, as might be expected, the sequences of replication-competent viruses in the active reservoir showed limited overlap with integrated proviral DNA, most of which is known to represent defective viruses. Finally, there was an inverse correlation between proviral DNA clone size and the probability of reactivation, suggesting that replication-competent viruses are less likely to be found among highly expanded provirus-containing cell clones.
Bone Marrow Transplantation | 2015
Niroshana Anandasabapathy; Gaëlle Breton; Arlene Hurley; Marina Caskey; Christine Trumpfheller; Popi Sarma; James Pring; Maggi Pack; Noreen Buckley; Irina Matei; David Lyden; Jennifer Green; Thomas Hawthorne; Henry Marsh; Michael Yellin; Thomas P. Davis; Tibor Keler; Sarah J. Schlesinger
Fms-like tyrosine kinase-3 ligand (Flt3L) uniquely binds the Flt3 (CD135) receptor expressed on hematopoietic stem cells (HSCs), early progenitor cells, immature thymocytes and steady-state dendritic cells (DCs) and induces their proliferation, differentiation, development and mobilization in the bone marrow, peripheral blood and lymphoid organs. CDX-301 has an identical amino-acid sequence and comparable biological activity to the previously tested rhuFlt3L, which ceased clinical development over a decade ago. This Phase 1 trial assessed the safety, pharmacokinetic, pharmacodynamic and immunologic profile of CDX-301, explored alternate dosing regimens and examined the impact of rhuFlt3L on key immune cell subsets. Thirty healthy volunteers received CDX-301 (1–75 μg/kg/day) over 5–10 days. One event of Grade 3 community-acquired pneumonia occurred. There were no other infections, dose-limiting toxicities or serious adverse events. CDX-301 resulted in effective peripheral expansion of monocytes, hematopoietic stem and progenitor cells and key subsets of myeloid DCs and plasmacytoid DCs, with no clear effect on regulatory T cells. These data from healthy volunteers support the potential for CDX-301, as monotherapy or in combination with other agents, in various indications including allogeneic HSC transplantation and immunotherapy, but the effects of CDX-301 will need to be investigated in each of these patient populations.