Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julio E. Villalon-Reina is active.

Publication


Featured researches published by Julio E. Villalon-Reina.


NeuroImage: Clinical | 2013

Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging.

Talia M. Nir; Neda Jahanshad; Julio E. Villalon-Reina; Arthur W. Toga; Clifford R. Jack; Michael W. Weiner; Paul M. Thompson

The Alzheimers Disease Neuroimaging Initiative (ADNI) recently added diffusion tensor imaging (DTI), among several other new imaging modalities, in an effort to identify sensitive biomarkers of Alzheimers disease (AD). While anatomical MRI is the main structural neuroimaging method used in most AD studies and clinical trials, DTI is sensitive to microscopic white matter (WM) changes not detectable with standard MRI, offering additional markers of neurodegeneration. Prior DTI studies of AD report lower fractional anisotropy (FA), and increased mean, axial, and radial diffusivity (MD, AxD, RD) throughout WM. Here we assessed which DTI measures may best identify differences among AD, mild cognitive impairment (MCI), and cognitively healthy elderly control (NC) groups, in region of interest (ROI) and voxel-based analyses of 155 ADNI participants (mean age: 73.5 ± 7.4; 90 M/65 F; 44 NC, 88 MCI, 23 AD). Both VBA and ROI analyses revealed widespread group differences in FA and all diffusivity measures. DTI maps were strongly correlated with widely-used clinical ratings (MMSE, CDR-sob, and ADAS-cog). When effect sizes were ranked, FA analyses were least sensitive for picking up group differences. Diffusivity measures could detect more subtle MCI differences, where FA could not. ROIs showing strongest group differentiation (lowest p-values) included tracts that pass through the temporal lobe, and posterior brain regions. The left hippocampal component of the cingulum showed consistently high effect sizes for distinguishing groups, across all diffusivity and anisotropy measures, and in correlations with cognitive scores.


Nature Communications | 2017

The challenge of mapping the human connectome based on diffusion tractography

Klaus H. Maier-Hein; Peter F. Neher; Jean-Christophe Houde; Marc-Alexandre Côté; Eleftherios Garyfallidis; Jidan Zhong; Maxime Chamberland; Fang-Cheng Yeh; Ying-Chia Lin; Qing Ji; Wilburn E. Reddick; John O. Glass; David Qixiang Chen; Yuanjing Feng; Chengfeng Gao; Ye Wu; Jieyan Ma; H. Renjie; Qiang Li; Carl-Fredrik Westin; Samuel Deslauriers-Gauthier; J. Omar Ocegueda González; Michael Paquette; Samuel St-Jean; Gabriel Girard; Francois Rheault; Jasmeen Sidhu; Chantal M. W. Tax; Fenghua Guo; Hamed Y. Mesri

Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.Though tractography is widely used, it has not been systematically validated. Here, authors report results from 20 groups showing that many tractography algorithms produce both valid and invalid bundles.


NeuroImage: Clinical | 2015

White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

Emily L. Dennis; Yan Jin; Julio E. Villalon-Reina; Liang Zhan; Claudia Kernan; Talin Babikian; Richard Mink; Christopher Babbitt; Jeffrey Johnson; Christopher C. Giza; Paul M. Thompson; Robert F. Asarnow

Traumatic brain injury (TBI) is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging) are uniquely sensitive to the white matter (WM) damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy) characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction) method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases). We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD). In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.


bioRxiv | 2016

Tractography-based connectomes are dominated by false-positive connections

Klaus H. Maier-Hein; Peter F. Neher; Jean-Christophe Houde; Marc-Alexandre Côté; Eleftherios Garyfallidis; Jidan Zhong; Maxime Chamberland; Fang-Cheng Yeh; Ying Chia Lin; Qing Ji; Wilburn E. Reddick; John O. Glass; David Qixiang Chen; Yuanjing Feng; Chengfeng Gao; Ye Wu; Jieyan Ma; He Renjie; Qiang Li; Carl-Fredrik Westin; Samuel Deslauriers-Gauthier; J. Omar Ocegueda González; Michael Paquette; Samuel St-Jean; Gabriel Girard; Francois Rheault; Jasmeen Sidhu; Chantal M. W. Tax; Fenghua Guo; Hamed Y. Mesri

Fiber tractography based on non-invasive diffusion imaging is at the heart of connectivity studies of the human brain. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain dataset with ground truth white matter tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. While most state-of-the-art algorithms reconstructed 90% of ground truth bundles to at least some extent, on average they produced four times more invalid than valid bundles. About half of the invalid bundles occurred systematically in the majority of submissions. Our results demonstrate fundamental ambiguities inherent to tract reconstruction methods based on diffusion orientation information, with critical consequences for the approach of diffusion tractography in particular and human connectivity studies in general.


Frontiers in Behavioral Neuroscience | 2014

Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome.

Maria Jalbrzikowski; Julio E. Villalon-Reina; Katherine H. Karlsgodt; Damla Senturk; Carolyn Chow; Paul M. Thompson; Carrie E. Bearden

22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk.


NeuroImage | 2013

White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging

Julio E. Villalon-Reina; Neda Jahanshad; Elliott A. Beaton; Arthur W. Toga; Paul M. Thompson; Tony J. Simon

Children with chromosome 22q11.2 deletion syndrome (22q11.2DS), Fragile X syndrome (FXS), or Turner syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders.


GigaScience | 2016

2015 Brainhack Proceedings

R. Cameron Craddock; Pierre Bellec; Daniel S. Margules; B. Nolan Nichols; Jörg P. Pfannmöller; AmanPreet Badhwar; David N. Kennedy; Jean-Baptiste Poline; Roberto Toro; Ben Cipollini; Ariel Rokem; Daniel Clark; Krzysztof J. Gorgolewski; Daniel J. Clark; Samir Das; Cécile Madjar; Ayan Sengupta; Zia Mohades; Sebastien Dery; Weiran Deng; Eric Earl; Damion V. Demeter; Kate Mills; Glad Mihai; Luka Ruzic; Nick Ketz; Andrew Reineberg; Marianne C. Reddan; Anne-Lise Goddings; Javier Gonzalez-Castillo

Table of contentsI1 Introduction to the 2015 Brainhack ProceedingsR. Cameron Craddock, Pierre Bellec, Daniel S. Margules, B. Nolan Nichols, Jörg P. PfannmöllerA1 Distributed collaboration: the case for the enhancement of Brainspell’s interfaceAmanPreet Badhwar, David Kennedy, Jean-Baptiste Poline, Roberto ToroA2 Advancing open science through NiDataBen Cipollini, Ariel RokemA3 Integrating the Brain Imaging Data Structure (BIDS) standard into C-PACDaniel Clark, Krzysztof J. Gorgolewski, R. Cameron CraddockA4 Optimized implementations of voxel-wise degree centrality and local functional connectivity density mapping in AFNIR. Cameron Craddock, Daniel J. ClarkA5 LORIS: DICOM anonymizerSamir Das, Cécile Madjar, Ayan Sengupta, Zia MohadesA6 Automatic extraction of academic collaborations in neuroimagingSebastien DeryA7 NiftyView: a zero-footprint web application for viewing DICOM and NIfTI filesWeiran DengA8 Human Connectome Project Minimal Preprocessing Pipelines to NipypeEric Earl, Damion V. Demeter, Kate Mills, Glad Mihai, Luka Ruzic, Nick Ketz, Andrew Reineberg, Marianne C. Reddan, Anne-Lise Goddings, Javier Gonzalez-Castillo, Krzysztof J. GorgolewskiA9 Generating music with resting-state fMRI dataCaroline Froehlich, Gil Dekel, Daniel S. Margulies, R. Cameron CraddockA10 Highly comparable time-series analysis in NitimeBen D. FulcherA11 Nipype interfaces in CBRAINTristan Glatard, Samir Das, Reza Adalat, Natacha Beck, Rémi Bernard, Najmeh Khalili-Mahani, Pierre Rioux, Marc-Étienne Rousseau, Alan C. EvansA12 DueCredit: automated collection of citations for software, methods, and dataYaroslav O. Halchenko, Matteo Visconti di Oleggio CastelloA13 Open source low-cost device to register dog’s heart rate and tail movementRaúl Hernández-Pérez, Edgar A. Morales, Laura V. CuayaA14 Calculating the Laterality Index Using FSL for Stroke Neuroimaging DataKaori L. Ito, Sook-Lei LiewA15 Wrapping FreeSurfer 6 for use in high-performance computing environmentsHans J. JohnsonA16 Facilitating big data meta-analyses for clinical neuroimaging through ENIGMA wrapper scriptsErik Kan, Julia Anglin, Michael Borich, Neda Jahanshad, Paul Thompson, Sook-Lei LiewA17 A cortical surface-based geodesic distance package for PythonDaniel S Margulies, Marcel Falkiewicz, Julia M HuntenburgA18 Sharing data in the cloudDavid O’Connor, Daniel J. Clark, Michael P. Milham, R. Cameron CraddockA19 Detecting task-based fMRI compliance using plan abandonment techniquesRamon Fraga Pereira, Anibal Sólon Heinsfeld, Alexandre Rosa Franco, Augusto Buchweitz, Felipe MeneguzziA20 Self-organization and brain functionJörg P. Pfannmöller, Rickson Mesquita, Luis C.T. Herrera, Daniela DenticoA21 The Neuroimaging Data Model (NIDM) APIVanessa Sochat, B Nolan NicholsA22 NeuroView: a customizable browser-base utilityAnibal Sólon Heinsfeld, Alexandre Rosa Franco, Augusto Buchweitz, Felipe MeneguzziA23 DIPY: Brain tissue classificationJulio E. Villalon-Reina, Eleftherios Garyfallidis


Neurobiology of Aging | 2015

Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease

Talia M. Nir; Julio E. Villalon-Reina; Gautam Prasad; Neda Jahanshad; Arthur W. Toga; Matt A. Bernstein; Clifford R. Jack; Michael W. Weiner; Paul M. Thompson

Characterizing brain changes in Alzheimers disease (AD) is important for patient prognosis and for assessing brain deterioration in clinical trials. In this diffusion weighted imaging study, we used a new fiber-tract modeling method to investigate white matter integrity in 50 elderly controls (CTL), 113 people with mild cognitive impairment, and 37 AD patients. After clustering tractography using a region-of-interest atlas, we used a shortest path graph search through each bundles fiber density map to derive maximum density paths (MDPs), which we registered across subjects. We calculated the fractional anisotropy (FA) and mean diffusivity (MD) along all MDPs and found significant MD and FA differences between AD patients and CTL subjects, as well as MD differences between CTL and late mild cognitive impairment subjects. MD and FA were also associated with widely used clinical scores. As an MDP is a compact low-dimensional representation of white matter organization, we tested the utility of diffusion tensor imaging measures along these MDPs as features for support vector machine based classification of AD.


NeuroImage | 2014

Automatic clustering and population analysis of white matter tracts using maximum density paths.

Gautam Prasad; Neda Jahanshad; Julio E. Villalon-Reina; Iman Aganj; Christophe Lenglet; Guillermo Sapiro; Katie L. McMahon; Greig I. de Zubicaray; Nicholas G. Martin; Margaret J. Wright; Arthur W. Toga; Paul M. Thompson

We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum density path; MDP); and registration of these paths together using geodesic curve matching to find local correspondences across a population. We demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals important parts of the white matter structure and considerably reduces the dimensionality over comparable fiber matching approaches.


Human Brain Mapping | 2015

Reproducibility of brain‐cognition relationships using three cortical surface‐based protocols: An exhaustive analysis based on cortical thickness

Kenia Martínez; Sarah K. Madsen; Anand A. Joshi; Francisco J. Román; Julio E. Villalon-Reina; Miguel Burgaleta; Sherif Karama; J. Janssen; Eugenio Marinetto; Manuel Desco; Paul M. Thompson; Roberto Colom

People differ in their cognitive functioning. This variability has been exhaustively examined at the behavioral, neural and genetic level to uncover the mechanisms by which some individuals are more cognitively efficient than others. Studies investigating the neural underpinnings of interindividual differences in cognition aim to establish a reliable nexus between functional/structural properties of a given brain network and higher order cognitive performance. However, these studies have produced inconsistent results, which might be partly attributed to methodological variations. In the current study, 82 healthy young participants underwent MRI scanning and completed a comprehensive cognitive battery including measurements of fluid, crystallized, and spatial intelligence, along with working memory capacity/executive updating, controlled attention, and processing speed. The cognitive scores were obtained by confirmatory factor analyses. T1‐weighted images were processed using three different surface‐based morphometry (SBM) pipelines, varying in their degree of user intervention, for obtaining measures of cortical thickness (CT) across the brain surface. Distribution and variability of CT and CT‐cognition relationships were systematically compared across pipelines and between two cognitively/demographically matched samples to overcome potential sources of variability affecting the reproducibility of findings. We demonstrated that estimation of CT was not consistent across methods. In addition, among SBM methods, there was considerable variation in the spatial pattern of CT‐cognition relationships. Finally, within each SBM method, results did not replicate in matched subsamples. Hum Brain Mapp 36:3227–3245, 2015.

Collaboration


Dive into the Julio E. Villalon-Reina's collaboration.

Top Co-Authors

Avatar

Paul M. Thompson

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Neda Jahanshad

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Talia M. Nir

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Gautam Prasad

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Emily L. Dennis

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faisal Rashid

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Johnson

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge