Jumana Ahmad
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jumana Ahmad.
Molecular Autism | 2017
Eva Loth; Tony Charman; Luke Mason; Julian Tillmann; Emily J.H. Jones; Caroline Wooldridge; Jumana Ahmad; Bonnie Auyeung; Claudia Brogna; Sara Ambrosino; Tobias Banaschewski; Simon Baron-Cohen; Sarah Baumeister; Christian F. Beckmann; Michael Brammer; Daniel Brandeis; Sven Bölte; Thomas Bourgeron; Carsten Bours; Yvette de Bruijn; Bhismadev Chakrabarti; Daisy Crawley; Ineke Cornelissen; Flavio Dell’Acqua; Guillaume Dumas; Sarah Durston; Christine Ecker; Jessica Faulkner; Vincent Frouin; Pilar Garces
BackgroundThe tremendous clinical and aetiological diversity among individuals with autism spectrum disorder (ASD) has been a major obstacle to the development of new treatments, as many may only be effective in particular subgroups. Precision medicine approaches aim to overcome this challenge by combining pathophysiologically based treatments with stratification biomarkers that predict which treatment may be most beneficial for particular individuals. However, so far, we have no single validated stratification biomarker for ASD. This may be due to the fact that most research studies primarily have focused on the identification of mean case-control differences, rather than within-group variability, and included small samples that were underpowered for stratification approaches. The EU-AIMS Longitudinal European Autism Project (LEAP) is to date the largest multi-centre, multi-disciplinary observational study worldwide that aims to identify and validate stratification biomarkers for ASD.MethodsLEAP includes 437 children and adults with ASD and 300 individuals with typical development or mild intellectual disability. Using an accelerated longitudinal design, each participant is comprehensively characterised in terms of clinical symptoms, comorbidities, functional outcomes, neurocognitive profile, brain structure and function, biochemical markers and genomics. In addition, 51 twin-pairs (of which 36 had one sibling with ASD) are included to identify genetic and environmental factors in phenotypic variability.ResultsHere, we describe the demographic characteristics of the cohort, planned analytic stratification approaches, criteria and steps to validate candidate stratification markers, pre-registration procedures to increase transparency, standardisation and data robustness across all analyses, and share some ‘lessons learnt’. A clinical characterisation of the cohort is given in the companion paper (Charman et al., accepted).ConclusionWe expect that LEAP will enable us to confirm, reject and refine current hypotheses of neurocognitive/neurobiological abnormalities, identify biologically and clinically meaningful ASD subgroups, and help us map phenotypic heterogeneity to different aetiologies.
Scientific Reports | 2017
Jumana Ahmad; Garrett Swan; Howard Bowman; Brad Wyble; Anna C. Nobre; Kimron L. Shapiro; Fiona McNab
Competition between simultaneously presented visual stimuli lengthens reaction time and reduces both the BOLD response and neural firing. In contrast, conditions of sequential presentation have been assumed to be free from competition. Here we manipulated the spatial proximity of stimuli (Near versus Far conditions) to examine the effects of simultaneous and sequential competition on different measures of working memory (WM) for colour. With simultaneous presentation, the measure of WM precision was significantly lower for Near items, and participants reported the colour of the wrong item more often. These effects were preserved when the second stimulus immediately followed the first, disappeared when they were separated by 500 ms, and were partly recovered (evident for our measure of mis-binding but not WM precision) when the task was altered to encourage participants to maintain the sequentially presented items together in WM. Our results show, for the first time, that competition affects the measure of WM precision, and challenge the assumption that sequential presentation removes competition.
Molecular Autism | 2018
Eva Loth; Lúcia Garrido; Jumana Ahmad; E. Watson; A. Duff; Brad Duchaine
BackgroundImpairments in social communication are a core feature of Autism Spectrum Disorder (ASD). Because the ability to infer other people’s emotions from their facial expressions is critical for many aspects of social communication, deficits in expression recognition are a plausible candidate marker for ASD. However, previous studies on facial expression recognition produced mixed results, which may be due to differences in the sensitivity of the many tests used and/or the heterogeneity among individuals with ASD. To ascertain whether expression recognition may serve as a diagnostic marker (which distinguishes people with ASD from a comparison group) or a stratification marker (which helps to divide ASD into more homogeneous subgroups), a crucial first step is to move beyond identification of mean group differences and to better understand the frequency and severity of impairments.MethodsThis study tested 46 individuals with ASD and 52 age- and IQ-matched typically developing (TD) participants on the Films Expression Task, which combines three key features of real-life expression recognition: naturalistic facial expressions, a broad range of simple and complex emotions, and short presentation time. Test-retest reliability was assessed in 28 individuals who did not participate in the main study and revealed acceptable reliability (ICC r = .74).ResultsCase-control comparisons showed highly significant mean group differences for accuracy (p = 1.1 × 10− 10), with an effect size (Cohen’s d = 1.6), more than twice as large as the mean effect size reported in a previous meta-analysis (Uljarevic and Hamilton, 2012, J Autism Dev Disord). The ASD group also had significantly increased mean reaction times overall (p = .00015, d = .83) and on correct trials (p = .0002, d = .78). However, whereas 63% of people with ASD showed severe deficits (they performed below two standard deviations of the TD mean, a small subgroup (15.3%) performed normally (within one standard deviation of the mean).ConclusionThese findings indicate that the majority of people with ASD have severe expression recognition deficits and that the Films Expression Test is a sensitive task for biomarker research in ASD. Future work is needed to establish whether ASD subgroups with and without expression recognition deficits differ from one another in terms of their symptom profile or neurobiological underpinnings.
Molecular Autism | 2017
Tony Charman; Eva Loth; Julian Tillmann; Daisy Crawley; Caroline Wooldridge; David Goyard; Jumana Ahmad; Bonnie Auyeung; Sara Ambrosino; Tobias Banaschewski; Simon Baron-Cohen; Sarah Baumeister; Christian F. Beckmann; Sven Bölte; Thomas Bourgeron; Carsten Bours; Michael Brammer; Daniel Brandeis; Claudia Brogna; Yvette de Bruijn; Bhismadev Chakrabarti; Ineke Cornelissen; Flavio Dell’Acqua; Guillaume Dumas; Sarah Durston; Christine Ecker; Jessica Faulkner; Vincent Frouin; Pilar Garces; Lindsay M. Ham
Cognition | 2015
Heather J. Ferguson; Ian A. Apperly; Jumana Ahmad; Markus Bindemann; James E. Cane
Archive | 2013
Jumana Ahmad; Heather J. Ferguson; Howard Bowman
Archive | 2012
Heather J. Ferguson; Jumana Ahmad; Philip Ulrich; Markus Bindemann; Ian A. Apperly
Archive | 2012
Jumana Ahmad; Heather J. Ferguson; Howard Bowman
Archive | 2012
Jumana Ahmad; Heather J. Ferguson; Howard Bowman
Archive | 2012
Jumana Ahmad; Heather J. Ferguson; Howard Bowman