Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Hamazaki is active.

Publication


Featured researches published by Jun Hamazaki.


Journal of Clinical Investigation | 2011

A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans

Akiko Kitamura; Yoichi Maekawa; Hisanori Uehara; Keisuke Izumi; Izumi Kawachi; Masatoyo Nishizawa; Yasuko Toyoshima; Hitoshi Takahashi; Daron M. Standley; Keiji Tanaka; Jun Hamazaki; Shigeo Murata; Koji Obara; Itaru Toyoshima; Koji Yasutomo

Proteasomes are multisubunit proteases that play a critical role in maintaining cellular function through the selective degradation of ubiquitinated proteins. When 3 additional β subunits, expression of which is induced by IFN-γ, are substituted for their constitutively expressed counterparts, the structure is converted to an immunoproteasome. However, the underlying roles of immunoproteasomes in human diseases are poorly understood. Using exome analysis, we found a homozygous missense mutation (G197V) in immunoproteasome subunit, β type 8 (PSMB8), which encodes one of the β subunits induced by IFN-γ in patients from 2 consanguineous families. Patients bearing this mutation suffered from autoinflammatory responses that included recurrent fever and nodular erythema together with lipodystrophy. This mutation increased assembly intermediates of immunoproteasomes, resulting in decreased proteasome function and ubiquitin-coupled protein accumulation in the patients tissues. In the patients skin and B cells, IL-6 was highly expressed, and there was reduced expression of PSMB8. Downregulation of PSMB8 inhibited the differentiation of murine and human adipocytes in vitro, and injection of siRNA against Psmb8 in mouse skin reduced adipocyte tissue volume. These findings identify PSMB8 as an essential component and regulator not only of inflammation, but also of adipocyte differentiation, and indicate that immunoproteasomes have pleiotropic functions in maintaining the homeostasis of a variety of cell types.


Cell | 2009

Assembly Pathway of the Mammalian Proteasome Base Subcomplex Is Mediated by Multiple Specific Chaperones

Takeumi Kaneko; Jun Hamazaki; Shun-ichiro Iemura; Katsuhiro Sasaki; Kaori Furuyama; Tohru Natsume; Keiji Tanaka; Shigeo Murata

The 26S proteasome is an enzymatic complex that degrades ubiquitinated proteins in eukaryotic cells. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The latter is further divided into the lid and base subcomplexes. While the mechanism involved in the assembly of the CP is well investigated, that of the RP is poorly understood. Here, we show that the formation of the mammalian base subcomplex involves three distinct modules, where specific pairs of ATPase subunits are associated with the distinct chaperones p28, S5b, or p27. The process of base formation starts from association of the p28-Rpt3-Rpt6-Rpn14 complex with the S5b-Rpt1-Rpt2-Rpn1 complex, followed by incorporation of the p27-Rpt5-Rpt4 complex and Rpn2, where p28, S5b, and p27 regulate the associations between the modules. These chaperones dissociate before completion of 26S proteasome formation. Our results demonstrate that base assembly is facilitated by multiple proteasome-dedicated chaperones, like CP assembly.


Human Molecular Genetics | 2009

17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse

Keisuke Tokui; Hiroaki Adachi; Masahiro Waza; Masahisa Katsuno; Makoto Minamiyama; Hideki Doi; Keiji Tanaka; Jun Hamazaki; Shigeo Murata; Fumiaki Tanaka; Gen Sobue

The ubiquitin-proteasome system (UPS) is the principal protein degradation system that tags and targets short-lived proteins, as well as damaged or misfolded proteins, for destruction. In spinal and bulbar muscular atrophy (SBMA), the androgen receptor (AR), an Hsp90 client protein, is such a misfolded protein that tends to aggregate in neurons. Hsp90 inhibitors promote the degradation of Hsp90 client proteins via the UPS. In a transgenic mouse model of SBMA, we examined whether a functioning UPS is preserved, if it was capable of degrading polyglutamine-expanded mutant AR, and what might be the therapeutic effects of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), an oral Hsp90 inhibitor. Ubiquitin-proteasomal function was well preserved in SBMA mice and was even increased during advanced stages when the mice developed severe phenotypes. Administration of 17-DMAG markedly ameliorated motor impairments in SBMA mice without detectable toxicity and reduced amounts of monomeric and nuclear-accumulated mutant AR. Mutant AR was preferentially degraded in the presence of 17-DMAG in both SBMA cell and mouse models when compared with wild-type AR. 17-DMAG also significantly induced Hsp70 and Hsp40. Thus, 17-DMAG would exert a therapeutic effect on SBMA via preserved proteasome function.


Molecular and Cellular Biology | 2007

Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development.

Jun Hamazaki; Katsuhiro Sasaki; Hiroyuki Kawahara; Shin-ichi Hisanaga; Keiji Tanaka; Shigeo Murata

ABSTRACT Rpn10 is a subunit of the 26S proteasome that recognizes polyubiquitinated proteins. The importance of Rpn10 in ubiquitin-mediated proteolysis is debatable, since a deficiency of Rpn10 causes different phenotypes in different organisms. To date, the role of mammalian Rpn10 has not been examined genetically. Moreover, vertebrates have five splice variants of Rpn10 whose expressions are developmentally regulated, but their biological significance is not understood. To address these issues, we generated three kinds of Rpn10 mutant mice. Rpn10 knockout resulted in early-embryonic lethality, demonstrating the essential role of Rpn10 in mouse development. Rpn10a knock-in mice, which exclusively expressed the constitutive type of Rpn10 and did not express vertebrate-specific variants, grew normally, indicating that Rpn10 diversity is not essential for conventional development. Mice expressing the N-terminal portion of Rpn10, which contained a von Willebrand factor A (VWA) domain but lacked ubiquitin-interacting motifs (Rpn10ΔUIM), also exhibited embryonic lethality, suggesting the important contribution of UIM domains to viability, but survived longer than Rpn10-null mice, consistent with a “facilitator” function of the VWA domain. Biochemical analysis of the Rpn10ΔUIM liver showed specific impairment of degradation of ubiquitinated proteins. Our results demonstrate that Rpn10-mediated degradation of ubiquitinated proteins, catalyzed by UIMs, is indispensable for mammalian life.


eLife | 2016

The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

Shun Koizumi; Taro Irie; Shoshiro Hirayama; Yasuyuki Sakurai; Hideki Yashiroda; Isao Naguro; Hidenori Ichijo; Jun Hamazaki; Shigeo Murata

In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes. DOI: http://dx.doi.org/10.7554/eLife.18357.001


Molecular and Cellular Biology | 2010

PAC1 Gene Knockout Reveals an Essential Role of Chaperone-Mediated 20S Proteasome Biogenesis and Latent 20S Proteasomes in Cellular Homeostasis

Katsuhiro Sasaki; Jun Hamazaki; Masato Koike; Yuko Hirano; Masaaki Komatsu; Yasuo Uchiyama; Keiji Tanaka; Shigeo Murata

ABSTRACT The 26S proteasome, a central enzyme for ubiquitin-dependent proteolysis, is a highly complex structure comprising 33 distinct subunits. Recent studies have revealed multiple dedicated chaperones involved in proteasome assembly both in yeast and in mammals. However, none of these chaperones is essential for yeast viability. PAC1 is a mammalian proteasome assembly chaperone that plays a role in the initial assembly of the 20S proteasome, the catalytic core of the 26S proteasome, but does not cause a complete loss of the 20S proteasome when knocked down. Thus, both chaperone-dependent and -independent assembly pathways exist in cells, but the contribution of the chaperone-dependent pathway remains unclear. To elucidate its biological significance in mammals, we generated PAC1 conditional knockout mice. PAC1-null mice exhibited early embryonic lethality, demonstrating that PAC1 is essential for mammalian development, especially for explosive cell proliferation. In quiescent adult hepatocytes, PAC1 is responsible for producing the majority of the 20S proteasome. PAC1-deficient hepatocytes contained normal amounts of the 26S proteasome, but they completely lost the free latent 20S proteasome. They also accumulated ubiquitinated proteins and exhibited premature senescence. Our results demonstrate the importance of the PAC1-dependent assembly pathway and of the latent 20S proteasomes for maintaining cellular integrity.


PLOS Genetics | 2015

Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis

Jun Hamazaki; Shoshiro Hirayama; Shigeo Murata

Intracellular proteins tagged with ubiquitin chains are targeted to the 26S proteasome for degradation. The two subunits, Rpn10 and Rpn13, function as ubiquitin receptors of the proteasome. However, differences in roles between Rpn10 and Rpn13 in mammals remains to be understood. We analyzed mice deficient for Rpn13 and Rpn10. Liver-specific deletion of either Rpn10 or Rpn13 showed only modest impairment, but simultaneous loss of both caused severe liver injury accompanied by massive accumulation of ubiquitin conjugates, which was recovered by re-expression of either Rpn10 or Rpn13. We also found that mHR23B and ubiquilin/Plic-1 and -4 failed to bind to the proteasome in the absence of both Rpn10 and Rpn13, suggesting that these two subunits are the main receptors for these UBL-UBA proteins that deliver ubiquitinated proteins to the proteasome. Our results indicate that Rpn13 mostly plays a redundant role with Rpn10 in recognition of ubiquitinated proteins and maintaining homeostasis in Mus musculus.


Biology Open | 2013

Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition.

Seung-Wook Shin; Natsumi Shimizu; Mikiko Tokoro; Satoshi Nishikawa; Yuki Hatanaka; Masayuki Anzai; Jun Hamazaki; Satoshi Kishigami; Kazuhiro Saeki; Yoshihiko Hosoi; Akira Iritani; Shigeo Murata; Kazuya Matsumoto

Summary During the maternal-to-zygotic transition (MZT), maternal proteins in oocytes are degraded by the ubiquitin–proteasome system (UPS), and new proteins are synthesized from the zygotic genome. However, the specific mechanisms underlying the UPS at the MZT are not well understood. We identified a molecule named zygote-specific proteasome assembly chaperone (ZPAC) that is specifically expressed in mouse gonads, and expression of ZPAC was transiently increased at the mouse MZT. ZPAC formed a complex with Ump1 and associated with precursor forms of 20S proteasomes. Transcription of ZPAC genes was also under the control of an autoregulatory feedback mechanism for the compensation of reduced proteasome activity similar to Ump1 and 20S proteasome subunit gene expression. Knockdown of ZPAC in early embryos caused a significant reduction of proteasome activity and decrease in Ump1 and mature proteasomes, leading to accumulation of proteins that need to be degraded at the MZT and early developmental arrest. Therefore, a unique proteasome assembly pathway mediated by ZPAC is important for progression of the mouse MZT.


Journal of Biological Chemistry | 2014

Characterization of the Testis-specific Proteasome Subunit α4s in Mammals

Hiroyuki Uechi; Jun Hamazaki; Shigeo Murata

Background: Two subtypes of proteasome core particles (CPs) with tissue-specific β subunits have been identified in mammals. Results: Mammals have an additional proteasome α subunit, α4s, which forms the male germ-specific CP. Conclusion: The α4s-containing CP is a new subtype of CP with unique properties distinct from the constitutive CP. Significance: Our results provide a clue for understanding the role of the proteasome in mammalian testes. The 26 S proteasome is responsible for regulated proteolysis in eukaryotic cells. It is composed of one 20 S core particle (CP) flanked by one or two 19 S regulatory particles. The CP is composed of seven different α-type subunits (α1-α7) and seven different β-type subunits, three of which are catalytic. Vertebrates encode four additional catalytic β subunits that are expressed predominantly in immune tissues and produce distinct subtypes of CPs particularly well suited for the acquired immune system. In contrast, the diversity of α subunits remains poorly understood. Recently, another α subunit, referred to as α4s, was reported. However, little is known about α4s. Here we provide a detailed characterization of α4s and the α4s-containing CP. α4s is exclusively expressed in germ cells that enter the meiotic prophase and is incorporated into the CP in place of α4. A comparison of structural models revealed that the differences in the primary sequences between α4 and α4s are located on the outer surface of the CP, suggesting that α4s interacts with specific molecules via these unique regions. α4s-containing CPs account for the majority of the CPs in mouse sperm. The catalytic β subunits in the α4s-containing CP are β1, β2, and β5, and immunosubunits are not included in the α4s-containing CP. α4s-containing CPs have a set of peptidase activities almost identical to those of α4-containing CPs. Our results provide a basis for understanding the role of α4s and male germ cell-specific proteasomes in mammals.


Scientific Reports | 2015

Sirt1-deficiency causes defective protein quality control.

Takuya Tomita; Jun Hamazaki; Shoshiro Hirayama; Michael W. McBurney; Hideki Yashiroda; Shigeo Murata

Protein quality control is an important mechanism to maintain cellular homeostasis. Damaged proteins have to be restored or eliminated by degradation, which is mainly achieved by molecular chaperones and the ubiquitin-proteasome system. The NAD+-dependent deacetylase Sirt1 has been reported to play positive roles in the regulation of cellular homeostasis in response to various stresses. However, its contribution to protein quality control remains unexplored. Here we show that Sirt1 is involved in protein quality control in both an Hsp70-dependent and an Hsp70-independent manner. Loss of Sirt1 led to the accumulation of ubiquitinated proteins in cells and tissues, especially upon heat stress, without affecting proteasome activities. This was partly due to decreased basal expression of Hsp70. However, this accumulation was only partially alleviated by overexpression of Hsp70 or induction of Hsp70 upon heat shock in Sirt1-deficient cells and tissues. These results suggest that Sirt1 mediates both Hsp70-dependent and Hsp70-independent protein quality control. Our findings cast new light on understanding the role of Sirt1 in maintaining cellular homeostasis.

Collaboration


Dive into the Jun Hamazaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge