Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-Hui Yin is active.

Publication


Featured researches published by Jun-Hui Yin.


Molecular Medicine Reports | 2014

Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner.

Hao Ding; Song Chen; Jun-Hui Yin; Xue-Tao Xie; Zhen‑Hong Zhu; You-Shui Gao; Changqing Zhang

The effects of hypoxia on the osteogenic potential of mesenchymal stem cells (MSCs) have been previously reported. From these studies, possible factors affecting the association between hypoxia and the osteogenic differentiation of MSCs have been suggested, including hypoxia severity, cell origin and methods of induction. The effect of the duration of hypoxia, however, remains poorly understood. The aim of the present study was to investigate the effect of continuous hypoxia on the induced osteogenesis of MSCs. Rat MSCs were isolated and cultured in vitro. Once the cells had been cultured to passage three, they were switched to 1% oxygen and cultured either with or without osteogenic medium, while cells in the control groups were cultured under normoxia in corresponding conditions. Four osteogenic differentiation biomarkers, runt-related transcription factor 2, osteopontin, osteocalcin and alkaline phosphatase, were analyzed by quantitative polymerase chain reaction and western blotting at defined intervals throughout the culture period. In addition, Alizarin Red staining was used to assess changes in mineralization. The results showed that 1% hypoxia was able to enhance and accelerate the osteogenic ability of the MSCs during the initial phases of differentiation, and the protein expression of certain associated biomarkers was upregulated. However, continuous hypoxia was shown to impair osteogenesis in the latter stages of differentiation. These findings suggest that hypoxia can regulate the osteogenesis of MSCs in a time-dependent manner.


International Journal of Biological Sciences | 2016

Vitamin K2 Prevents Glucocorticoid-induced Osteonecrosis of the Femoral Head in Rats

Yuelei Zhang; Jun-Hui Yin; Hao Ding; Wei Zhang; Changqing Zhang; You-Shui Gao

Glucocorticoid medication is one of the most common causes of atraumatic osteonecrosis of the femoral head (ONFH), and vitamin K2 (VK2) has been shown to play an important and beneficial role in bone metabolism. In this study, we hypothesized that VK2 could decrease the incidence of glucocorticoid-induced ONFH in a rat model. Using in vitro studies, we investigated how bone marrow-derived stem cells in the presence of methylprednisolone proliferate and differentiate, specifically examining osteogenic-related proteins, including Runx2, alkaline phosphatase and osteocalcin. Using in vivo studies, we established glucocorticoid-induced ONFH in rats and investigated the preventive effect of VK2. We employed micro-CT scanning, angiography of the femoral head, and histological and immunohistochemical analyses, which demonstrated that VK2 yielded beneficial effects for subchondral bone trabecula. In conclusion, VK2 is an effective antagonist for glucocorticoid on osteogenic progenitors. The underlying mechanisms include acceleration of BMSC propagation and promotion of bone formation-associated protein expression, which combine and contribute to the prevention of glucocorticoid-induced ONFH in rats.


International Journal of Biological Sciences | 2016

Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model.

Yuelei Zhang; Jun-Hui Yin; Hao Ding; Changqing Zhang; You-Shui Gao

Glucocorticoid has been reported to decrease blood vessel number and harm the blood supply in the femoral head, which is recognized to be an important mechanism of glucocorticoid-induced osteonecrosis of the femoral head (ONFH). To prevent glucocorticoid-induced ONFH, medication that promotes both bone formation and angiogenesis would be ideal. Vitamin K2 has been revealed to play an important role in bone metabolism; however, few studies have focused on the effect of Vitamin K2 on new vascular formation. Thus, this study aimed to investigate whether Vitamin K2 promoted new blood vessel formation in the presence of glucocorticoids, both in vitro and in vivo. The effect of Vitamin K2 on viability, migration, in vitro tube formation, and VEGF, vWF, CD31, KDR, Flt and PDGFB in EAhy926 incubated with or without dexamethasone were elucidated. VEGF, TGF-β and BMP-2, angiogenesis-related proteins secreted by osteoblasts, were also detected in the osteoblast-like cell line of MG63. In addition, blood vessels of the femoral head in rats administered with or without methylprednisolone and Vitamin K2 were evaluated using angiography and CD31 staining. In vitro studies showed that Vitamin K2 significantly protected endothelial cells from dexamethasone-induced apoptosis, promoted endothelial cell migration and in vitro tube formation. Angiogenesis-related proteins both in EAhy926 and MG63 were also upregulated by Vitamin K2 when cotreated with dexamethasone. In vivo studies showed enhanced blood vessel volume and CD31-positive staining cells in rats cotreated with VK2 and methylprednisolone compared to rats treated with methylprednisolone only. Collectively, Vitamin K2 has the ability to promote angiogenesis in vitro and to ameliorate vessels of the femoral head in glucocorticoid-treated rats in vivo, indicating that Vitamin K2 is a promising drug that may be used to prevent steroid-induced ONFH.


International Journal of Biological Sciences | 2016

Proton-sensing GPCR-YAP Signalling Promotes Cancer-associated Fibroblast Activation of Mesenchymal Stem Cells

Hongyi Zhu; Shang-Chun Guo; Yuelei Zhang; Jun-Hui Yin; Wenjing Yin; Shi-Cong Tao; Yang Wang; Changqing Zhang

The pHs of extracellular fluids (ECFs) in normal tissues are commonly maintained at 7.35 to 7.45. The acidification of the ECF is one of the major characteristics of tumour microenvironment. In this study, we report that decreased extracellular pH promotes the transformation of mesenchymal stem cells (MSCs) into cancer-associated fibroblasts (CAFs), termed CAF activation. Furthermore, we demonstrate that GPR68, a proton-sensing G-protein-coupled receptor (GPCR), is required for the pH-dependent regulation of the differentiation of MSCs into CAFs. We then identify Yes-associated protein 1 (YAP) as a downstream effector of GPR68 for CAF activation. Finally, we show that knockdown of GPR68 in MSCs can prevent the CAF activation under cancer microenvironment. Systemic transplantation of GPR68-silenced MSCs suppresses in-situ tumour growth and prolong life span after cancer graft.


Oncotarget | 2017

Novel Akt activator SC-79 is a potential treatment for alcohol-induced osteonecrosis of the femoral head

Yi-Xuan Chen; Shi-Cong Tao; Zheng-Liang Xu; Wenjing Yin; Yuelei Zhang; Jun-Hui Yin; You-Shui Gao; Changqing Zhang

Alcohol is a leading risk factor for osteonecrosis of the femoral head (ONFH). We explored the molecular mechanisms underlying alcohol-induced ONFH and investigated the protective effect of the novel Akt activator SC-79 against this disease. We found that ethanol inhibited expression of the osteogenic genes RUNX2 and OCN, downregulated osteogenic differentiation, impaired the recruitment of Akt to the plasma membrane, and suppressed Akt phosphorylation at Ser473, thereby inhibiting the Akt/GSK3β/β-catenin signaling pathway in bone mesenchymal stem cells. To assess SC-79′s ability to counteract the inhibitory effect of ethanol on Akt-Ser73 phosphorylation, we performed micro-computerized tomography and immunofluorescent staining of osteopontin, osteocalcin and collagen type 1 in a rat model of alcohol-induced ONFH. We found that SC-79 injections inhibited alcohol-induced osteonecrosis. These results show that alcohol-induced ONFH is associated with suppression of p-Akt-Ser473 in the Akt/GSK3β/β-catenin signaling pathway in bone mesenchymal stem cells. We propose that SC-79 treatment to rescue Akt activation could be tested in the clinic as a potential therapeutic approach to preventing the development of alcohol-induced ONFH.


Molecular Medicine Reports | 2017

Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR‑133a expression

Yue-Lei Zhang; Shiyang Weng; Jun-Hui Yin; Hao Ding; Changqing Zhang; You-Shui Gao

Vitamin K2 has been demonstrated to promote the osteogenic differentiation of mesenchymal stem cells; however, the mechanisms underlying this effect remain unclear. As microRNA (miR)-133a has been identified as a negative regulator of osteogenic differentiation, the present study hypothesized that vitamin K2 promoted osteogenesis by inhibiting miR-133a. Using human bone marrow stromal cells (hBMSCs) overexpressing miR-133a, or a control, the expression levels of osteogenesis-associated proteins, including runt-related transcription factor 2, alkaline phosphatase and osteocalcin, were analyzed. miR-133a significantly suppressed the osteogenic differentiation of hBMSCs. To determine the effect of vitamin K2 on miR-133a expression and osteogenesis, hBMSCs were treated with vitamin K2. Vitamin K2 inhibited miR-133a expression, which was accompanied by enhanced osteogenic differentiation. Furthermore, the expression levels of vitamin K epoxide reductase complex subunit 1, the key protein in γ-carboxylation, were downregulated by miR-133a overexpression and upregulated by vitamin K2 treatment, indicating a positive feedback on γ-carboxylation. The results of the present study suggested that vitamin K2 targets miR-133a to regulate osteogenesis.


International Journal of Molecular Medicine | 2017

Protective effect of VK2 on glucocorticoid-treated MC3T3-E1 cells.

Yue-Lei Zhang; Jun-Hui Yin; Hao Ding; Wei Zhang; Changqing Zhang; You-Shui Gao

Glucocorticoids (GCs) contribute to the increased incidence of secondary osteoporosis and osteonecrosis, and medications for the prevention and treatment of these complications have been investigated for many years. Vitamin K2 (VK2) has been proven to promote bone formation both in vitro and in vivo. In this study, we examined the effects of VK2 on dexamethasone (DEX)-treated MC3T3-E1 osteoblastic cells. We observed that VK2 promoted the proliferation and enhanced the survival of dexamethasone-treated MC3T3-E1 cells. In addition, VK2 upregulated the expression levels of osteogenic marker proteins, such as Runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin, which were significantly inhibited by dexamethasone. On the whole, our findings indicate that VK2 has the potential to antagonize the effects of GCs on MC3T3-E1 cells, and may thus prove to be a promising agent for the prevention and treatment of GC-induced osteoporosis and osteonecrosis.


Cellular Physiology and Biochemistry | 2017

The Protective Effect of Cordycepin On Alcohol-Induced Osteonecrosis of the Femoral Head

Yi-Xuan Chen; Dao-Yu Zhu; Zheng-Liang Xu; Jun-Hui Yin; Xiaowei Yu; Jiong Mei; You-Shui Gao; Changqing Zhang

Background: Alcohol abuse is known to be a leading risk factor for atraumatic osteonecrosis of the femoral head (ONFH), in which the suppression of osteogenesis plays a critical role. Cordycepin benefits bone metabolism; however, there has been no study to determine its effect on osteonecrosis. Methods: Human bone mesenchymal stem cells (hBMSCs) were identified by multi-lineage differentiation. Alkaline phosphatase (ALP) activity, RT-PCR, western blots, immunofluorescent assay and Alizarin red staining of BMSCs were evaluated. A rat model of alcohol-induced ONFH was established to investigate the protective role of cordycepin against ethanol. Hematoxylin & eosin (H&E) staining and micro-computerized tomography (micro-CT) were performed to observe ONFH. Apoptosis was assessed by TdT-mediated dUTP nick end labeling (TUNEL). Immunohistochemical staining was carried out to detect OCN and COL1. Results: Ethanol significantly suppressed ALP activity, decreased gene expression of OCN and BMP2, lowered levels of RUNX2 protein, and reduced immunofluorescence staining of OCN and COL1 and calcium formation of hBMSCs. However, these inhibitory effects were attenuated by cordycepin co-treatment at concentrations of 1 and 10 µg/mL Moreover, it was revealed that the osteo-protective effect of cordycepin was associated with modulation of the Wnt/β-catenin pathway. In vivo, by micro-CT, TUNEL and immunohistochemical staining of OCN and COL1, we found that cordycepin administration prevented alcohol-induced ONFH. Conclusion: Cordycepin treatment to enhance osteogenesis may be considered a potential therapeutic approach to prevent the development of alcohol-induced ONFH.


Scientific Reports | 2016

Decreased extracellular pH inhibits osteogenesis through proton-sensing GPR4-mediated suppression of yes-associated protein

Shi-Cong Tao; You-Shui Gao; Hongyi Zhu; Jun-Hui Yin; Yi-Xuan Chen; Yuelei Zhang; Shang-Chun Guo; Changqing Zhang

The pH of extracellular fluids is a basic property of the tissue microenvironment and is normally maintained at 7.40 ± 0.05 in humans. Many pathological circumstances, such as ischemia, inflammation, and tumorigenesis, result in the reduction of extracellular pH in the affected tissues. In this study, we reported that the osteogenic differentiation of BMSCs was significantly inhibited by decreases in the extracellular pH. Moreover, we demonstrated that proton-sensing GPR4 signaling mediated the proton-induced inhibitory effects on the osteogenesis of BMSCs. Additionally, we found that YAP was the downstream effector of GPR4 signaling. Our findings revealed that the extracellular pH modulates the osteogenic responses of BMSCs by regulating the proton-sensing GPR4-YAP pathway.


Oncotarget | 2017

The protective effect of PFTα on alcohol-induced osteonecrosis of the femoral head

Yi-Xuan Chen; Dao-Yu Zhu; Jun-Hui Yin; Wenjing Yin; Yuelei Zhang; Hao Ding; Xiaowei Yu; Jiong Mei; You-Shui Gao; Changqing Zhang

Epidemiologic studies have shown alcohol plays a pivotal role in the development of osteonecrosis of the femoral head (ONFH). The aim of this study was to explore the underlying mechanism of alcohol-induced ONFH and the protective effect of pifithrin-α (PFTα). In vitro, we found ethanol treatment significantly activated p53, suppressed Wnt/β-catenin signaling and inhibited osteogenic-related proteins. Furthermore, by separating the cytoplasmic and nuclear proteins, we found ethanol inhibited osteogenesis by impairing the accumulation of β-catenin in both the cytoplasm and nucleus in human bone mesenchymal stem cells (hBMSCs), which resulted from activating glycogen synthase kinase-3β (GSK-3β). Therefore, PFTα, a p53 inhibitor, was introduced in this study to block the ethanol-triggered activation of p53 in hBMSCs and alcohol-induced ONFH in a rat model. In vivo, we established alcohol-induced ONFH in rats and investigated the protective effect of PFTα. Hematoxylin & eosin (H&E) staining combined with TdT-mediated dUTP nick end labeling (TUNEL), cleaved caspase-3 immunohistochemical staining, and micro-CT images revealed substantial ONFH in the alcohol-administered rats, whereas significantly less osteonecrosis developed in the rats injected with PFTα. Osteogenic-related proteins, including osteocalcin, osteopontin and collagen I, were significantly decreased in the alcohol-administered rats, whereas these results were reversed in the PFTα-injected rats. Fluorochrome labeling similarly showed that alcohol significantly reduced the osteogenic activity in the rat femoral head, which was blocked by the injection of PFTα. In conclusion, PFTα had an antagonistic effect against the effects of ethanol on hBMSCs and could be a clinical strategy to prevent the development of alcohol-induced ONFH.Epidemiologic studies have shown alcohol plays a pivotal role in the development of osteonecrosis of the femoral head (ONFH). The aim of this study was to explore the underlying mechanism of alcohol-induced ONFH and the protective effect of pifithrin-α (PFTα). In vitro, we found ethanol treatment significantly activated p53, suppressed Wnt/β-catenin signaling and inhibited osteogenic-related proteins. Furthermore, by separating the cytoplasmic and nuclear proteins, we found ethanol inhibited osteogenesis by impairing the accumulation of β-catenin in both the cytoplasm and nucleus in human bone mesenchymal stem cells (hBMSCs), which resulted from activating glycogen synthase kinase-3β (GSK-3β). Therefore, PFTα, a p53 inhibitor, was introduced in this study to block the ethanol-triggered activation of p53 in hBMSCs and alcohol-induced ONFH in a rat model. In vivo, we established alcohol-induced ONFH in rats and investigated the protective effect of PFTα. Hematoxylin & eosin (H&E) staining combined with TdT-mediated dUTP nick end labeling (TUNEL), cleaved caspase-3 immunohistochemical staining, and micro-CT images revealed substantial ONFH in the alcohol-administered rats, whereas significantly less osteonecrosis developed in the rats injected with PFTα. Osteogenic-related proteins, including osteocalcin, osteopontin and collagen I, were significantly decreased in the alcohol-administered rats, whereas these results were reversed in the PFTα-injected rats. Fluorochrome labeling similarly showed that alcohol significantly reduced the osteogenic activity in the rat femoral head, which was blocked by the injection of PFTα. In conclusion, PFTα had an antagonistic effect against the effects of ethanol on hBMSCs and could be a clinical strategy to prevent the development of alcohol-induced ONFH.

Collaboration


Dive into the Jun-Hui Yin's collaboration.

Top Co-Authors

Avatar

Changqing Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

You-Shui Gao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hao Ding

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yuelei Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yi-Xuan Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Shi-Cong Tao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wei Zhang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Wenjing Yin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hongyi Zhu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Shang-Chun Guo

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge