Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-Jie Wang is active.

Publication


Featured researches published by Jun-Jie Wang.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer.

Gang Wang; Jun-Jie Wang; Xiang-Jun Tang; Li Du; Fei Li

This study aimed to develop a novel polymeric carrier based on chitosan-functionalized Pluronic P123/F68 micelles loaded with myricetin (MYR) to improve the therapeutic index of chemotherapy for glioblastoma cancer. Following characterization and assessment of the cellular uptake and antitumor effects of MYR-loaded micelles (MYR-MCs) in vitro, the acute toxicity, blood-brain barrier (BBB) translocation, brain uptake and biodistribution in vivo were assessed. The results demonstrated that MYR-MCs exhibited improved cellular uptake and antitumor activity compared to free MYR in vitro, with a significantly enhanced anticancer effect in vivo following efficient transport across the BBB. However, MYR-MCs did not affect the brain endothelial, barrier function, the liver, heart or kidneys. Furthermore, MYR-MCs altered the expression of apoptotic proteins, such as Bcl-2, BAD and BAX, in mice. In conclusion, MYR-MCs may be considered an effective and promising drug delivery system for glioblastoma treatment.


Journal of Controlled Release | 2016

Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo.

Gang Wang; Jun-Jie Wang; XuanLi Chen; Li Du; Fei Li

To improve its poor aqueous solubility and stability, the potential chemopreventive agent quercetin was encapsulated in freeze-dried polymeric micelles by a thin film hydration and vacuum freeze-drying process before being used for glioma chemotherapy. The micelle characteristics, release profile, cellular uptake, intracellular drug concentration, transport across the blood-brain barrier, and antitumor efficiency in vivo were investigated. Results showed that the particle size of quercetin-loaded freeze-dried nanomicelles (QUE-FD-NMs) ranged from 20 to 80nm, with an efficiently sustained release profile. Increased intracellular uptake into Caco-2 cells with low cytotoxicity, efficient penetration of BBB, and powerful cytotoxicity on C6 glioma cells were observed. QUE-FD-NMs accumulated in tumor-bearing brain tissues and exhibited significant antitumor effects in vivo, which significantly benefited the survival of glioma-bearing mice. These findings suggest that freeze-drying micelles loaded with quercetin is a promising drug delivery method for glioma therapy.


International Journal of Nanomedicine | 2016

Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells

Xiang-Jun Tang; Kuan-Ming Huang; Hui Gui; Jun-Jie Wang; Jun-Ti Lu; Long-Jun Dai; Li Zhang; Gang Wang

As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR)/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs) and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence supportive of further development of MYR-MC formulation for preferentially targeting mitochondria of glioblastoma cells.


Journal of Cellular Physiology | 2018

Inhibition of glycolytic metabolism in glioblastoma cells by Pt3glc combinated with PI3K inhibitor via SIRT3-mediated mitochondrial and PI3K/Akt-MAPK pathway: Inhibition of glycolytic metabolism in glioblastoma cells by Pt3glc

Gang Wang; Xing-Li Fu; Jun-Jie Wang; Rui Guan; Yan Sun; Shing-shun Tony To

Glioblastoma multiforme (GBM) is the most malignant and aggressive glioma with abnormal expression of genes that mediate glycolytic metabolism and tumor cell growth. Petunidin‐3‐O‐glucoside (Pt3glc) is a kind of anthocyanin in the red grape and derived beverages, representing the most common naturally occurring anthocyanins with a reduced incidence of cancer and heart diseases. In this study, whether Pt3glc could effectively regulate glycolysis to inhibit GBM cell was investigated by using the DBTRG‐05MG cell lines. Notably, Pt3glc displayed potent antiproliferative activity and significantly changed the protein levels related to both glycolytic metabolism and GBM cell survival. The expression of the proapoptotic protein Bcl‐2‐associated X protein was increased with concomitant reduction on the levels of the antiapoptotic protein B‐cell lymphoma 2 and caspase‐3 activity. Furthermore, the levels of survival signaling proteins, such as protein kinase B (Akt) and phospho‐Akt (Scr473), extracellular signal‐regulated kinase (ERK) and phospho‐ERK, were significantly decreased by Pt3glc in combination with the phosphoinositide 3‐kinase (PI3K) inhibitor of LY294002. Most importantly, the levels of Sirtuin 3 (SIRT3) and phosphorylated p53 were also downregulated, indicating that Pt3glc combinated with PI3K inhibitor could induce GBM cell death may act via the SIRT3/p53‐mediated mitochondrial and PI3K/Akt‐ERK pathways. Our findings thus provide rational evidence that the combination of Pt3glc with PI3K inhibitor, which target alternative pathways in GBM cells, may be a useful adjuvant therapy in glioblastoma treatment.


Cancer Medicine | 2018

Strategy to targeting the immune resistance and novel therapy in colorectal cancer

Wang Gang; Jun-Jie Wang; Rui Guan; Sun Yan; Feng Shi; Jia-Yan Zhang; Zi-Meng Li; Jing Gao; Xing-Li Fu

Assessing the CRC subtypes that can predict the outcome of colorectal cancer (CRC) in patients with immunogenicity seems to be a promising strategy to develop new drugs that target the antitumoral immune response. In particular, the disinhibition of the antitumoral T‐cell response by immune checkpoint blockade has shown remarkable therapeutic promise for patients with mismatch repair (MMR) deficient CRC. In this review, the authors provide the update of the molecular features and immunogenicity of CRC, discuss the role of possible predictive biomarkers, illustrate the modern immunotherapeutic approaches, and introduce the most relevant ongoing preclinical study and clinical trials such as the use of the combination therapy with immunotherapy. Furthermore, this work is further to understand the complex interactions between the immune surveillance and develop resistance in tumor cells. As expected, if the promise of these developments is fulfilled, it could develop the effective therapeutic strategies and novel combinations to overcome immune resistance and enhance effector responses, which guide clinicians toward a more “personalized” treatment for advanced CRC patients.


Oncology Reports | 2017

Advances in the targeting of HIF-1α and future therapeutic strategies for glioblastoma multiforme (Review)

Gang Wang; Jun-Jie Wang; Xing-Li Fu; Rui Guang; Shing-shun Tony To

Cell metabolism can be reprogrammed by tissue hypoxia leading to cell transformation and glioblastoma multiforme (GBM) progression. In response to hypoxia, GBM cells are able to express a transcription factor called hypoxia inducible factor-1 (HIF-1). HIF-1 belongs to a family of heterodimeric proteins that includes HIF-1α and HIF-1β subunits. HIF-1α has been reported to play a pivotal role in GBM development and progression. In the present review, we discuss the role of HIF-1α in glucose uptake, cancer proliferation, cell mobility and chemoresistance in GBM. Evidence from previous studies indicates that HIF-1α regulates angiogenesis, metabolic and transcriptional signaling pathways. Examples of such are the EGFR, PI3K/Akt and MAPK/ERK pathways. It affects cell migration and invasion by regulating glucose metabolism and growth in GBM cells. The present review focuses on the strategies through which to target HIF-1α and the related downstream genes highlighting their regulatory roles in angiogenesis, apoptosis, migration and glucose metabolism for the development of future GBM therapeutics. Combined treatment with inhibitors of HIF-1α and glycolysis may enhance antitumor effects in clinical settings.


BioMed Research International | 2015

Effect and Mechanism of Total Flavonoids Extracted from Cotinus coggygria against Glioblastoma Cancer In Vitro and In Vivo

Gang Wang; Jun-Jie Wang; Li Du; Fei Li

Flavonoids, a major constituent of Cotinus coggygria (CC), have been reported to possess diverse biological activities, including antigenotoxic and hepatoprotective effects; however, few studies have investigated the biological activity of the total flavonoids of Cotinus coggygria, especially in terms of its cytotoxicity in cancer cells. In the present study, the Cotinus coggygria flavonoids (CCF) were extracted from Cotinus coggygria and characterized by HPLC. These results indicated that CCF extracts could inhibit cell proliferation, with IC50 values of 128.49 µg/mL (U87), 107.62 µg/mL (U251), and 93.57 µg/mL (DBTRG-05MG). The current investigation also revealed that CCF induced apoptosis in highly malignant glioblastoma cells, a process that apparently involved the inhibition of Akt coupled with ERK protein expression. This finding suggests that the PI3K/Akt-ERK signaling pathway is regulated by CCF and leads to the inhibition of the glioblastoma cancer cells. Furthermore, a significant antitumor effect of CCF was observed in xenograft animal models of glioblastoma multiforme in vivo. Taken together, these data suggest that CCF is the active component in the Cotinus coggygria plant that offers potential therapeutic modality in the abrogation of cancer cell proliferation, including the induction of apoptosis.


Journal of Cellular Physiology | 2018

New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy: WANG et al.

Gang Wang; Jun-Jie Wang; Peihao Yin; Ke Xu; Yu-Zhu Wang; Feng Shi; Jing Gao; Xing-Li Fu

Colorectal cancer (CRC) is a heterogeneous group of diseases that are the result of abnormal glucose metabolism alterations with high lactate production by pyruvate to lactate conversion, which remodels acidosis and offers an evolutional advantage for tumor cells, even enhancing their aggressive phenotype. This review summarizes recent findings that involve multiple genes, molecules, and downstream signaling in the dysregulated glycolytic pathway, which can allow a tumor to initiate acid byproducts and to progress, thereby resulting in acidosis commonly found in the tumor microenvironment of CRC. Moreover, the relationship between CRC cells and the tumor acidic microenvironment, especially for regulating lactate production and lactate dehydrogenase A levels, is also discussed, as well as comprehensively defining different aspects of glycolytic pathways that affect cancer cell proliferation, invasion, and migration. Furthermore, this review concentrates on glucose metabolism–mediated transduction factors in CRC, which include acid‐sensing ion channels, triosephosphate isomerase and key glycolysis‐related enzymes that regulate glycolytic metabolites, coupled with the effect on tumor cell glycolysis as well as signaling pathways. In conclusion, glucose metabolism mediated by glycolytic pathways that are integral to tumor acidosis in CRC is demonstrated. Therefore, selective metabolic inhibitors or agents against these targets in glucose metabolism through glycolytic pathways may be clinically useful to regulate the tumor’s acidic microenvironment for CRC treatment and to identify specific targets that regulate tumor acidosis through a cancer patient–personalized approach. Furthermore, strategies for modifying the metabolic processes that effectively inhibit cancer cell growth and tumor progression and activate potent anticancer effects may provide more effective antitumor prospects for CRC therapy.


Journal of Cellular Physiology | 2018

Strategies to target energy metabolism in consensus molecular subtype 3 along with Kirsten rat sarcoma viral oncogene homolog mutations for colorectal cancer therapy: WANG et al.

Gang Wang; Jun-Jie Wang; Pei-Hao Yin; Ke Xu; Yu-Zhu Wang; Feng Shi; Jing Gao; Xing-Li Fu

Alterations in cellular energy metabolism play a critical role in colorectal cancer (CRC), which has been identified as the definition of consensus molecular subtypes (CMSs), and CMS3 tumors exhibit energy metabolism signatures along with Kirsten rat sarcoma viral oncogene homolog (KRAS)‐activating mutations. This review summarizes the relationship between CMS3 tumors associated with mutated KRAS and energy metabolism in CRC, especially for the dysregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review concentrates on the role of metabolic genes and factors and signaling pathways, which coupled with a primary energy source connected with the CMS3 associated with mutated KRAS, induce metabolic alterations. The strategies to target energy metabolism for the metabolic alterations in mutated KRAS CRC are also introduced. In conclusion, dysregulated energy metabolism has a close relationship with mutated KRAS in CMS3 tumors. Therefore, selective inhibitors or agents against metabolic targets or KRAS signaling may be clinically useful for CMS3 tumor treatment through a personalized approach for patients with cancer.


Journal of Cellular Biochemistry | 2018

Strategies for targeting energy metabolism in Kirsten rat sarcoma viral oncogene homolog -mutant colorectal cancer: WANG et al.

Gang Wang; Jun-Jie Wang; Peihao Yin; Ke Xu; Yu-Zhu Wang; Feng Shi; Jing Gao; Xing-Li Fu

Alterations in cellular energy metabolism play critical roles in colorectal cancer (CRC). These alterations, which correlate to KRAS mutations, have been identified as energy metabolism signatures. This review summarizes the relationship between colorectal tumors associated with mutated KRAS and energy metabolism, especially for the deregulated energy metabolism that affects tumor cell proliferation, invasion, and migration. Furthermore, this review will concentrate on the role of metabolic genes, factors and signaling pathways, which are coupled with the primary energy source connected with the KRAS mutation that induces metabolic alterations. Strategies for targeting energy metabolism in mutated KRAS CRC are also introduced. In conclusion, deregulated energy metabolism has a close relationship with KRAS mutations in colorectal tumors. Therefore, selective inhibitors, agents against metabolic targets or KRAS signaling, may be clinically useful for colorectal tumor treatment through a patient‐personalized approach.

Collaboration


Dive into the Jun-Jie Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Guan

Hubei University of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ke Xu

Shanghai University

View shared research outputs
Top Co-Authors

Avatar

Li Du

Jiangsu University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shing-shun Tony To

Hong Kong Polytechnic University

View shared research outputs
Researchain Logo
Decentralizing Knowledge