Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Kunitomo is active.

Publication


Featured researches published by Jun Kunitomo.


Journal of Medicinal Chemistry | 2009

2-{3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl}-5-methyl-1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta with good brain permeability.

Morihisa Saitoh; Jun Kunitomo; Eiji Kimura; Hiroki Iwashita; Yumiko Uno; Tomohiro Onishi; Noriko Uchiyama; Tomohiro Kawamoto; Toshimasa Tanaka; Clifford D. Mol; Douglas R. Dougan; Garret P. Textor; Gyorgy Snell; Masayuki Takizawa; Fumio Itoh; Masakuni Kori

Glycogen synthase kinase 3beta (GSK-3beta) inhibition is expected to be a promising therapeutic approach for treating Alzheimers disease. Previously we reported a series of 1,3,4-oxadiazole derivatives as potent and highly selective GSK-3beta inhibitors, however, the representative compounds 1a,b showed poor pharmacokinetic profiles. Efforts were made to address this issue by reducing molecular weight and lipophilicity, leading to the identification of oxadiazole derivatives containing a sulfinyl group, (S)-9b and (S)-9c. These compounds exhibited not only highly selective and potent inhibitory activity against GSK-3beta but also showed good pharmacokinetic profiles including favorable BBB penetration. In addition, (S)-9b and (S)-9c given orally to mice significantly inhibited cold water stress-induced tau hyperphosphorylation in mouse brain.


Bioorganic & Medicinal Chemistry | 2009

Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3beta.

Morihisa Saitoh; Jun Kunitomo; Eiji Kimura; Yoji Hayase; Hiromi Kobayashi; Noriko Uchiyama; Tomohiro Kawamoto; Toshimasa Tanaka; Clifford D. Mol; Douglas R. Dougan; Garret Textor; Gyorgy Snell; Fumio Itoh

Glycogen synthase kinase-3beta (GSK-3beta) is implicated in abnormal hyperphosphorylation of tau protein and its inhibitors are expected to be a promising therapeutic agents for the treatment of Alzheimers disease. Here we report design, synthesis and structure-activity relationships of a novel series of oxadiazole derivatives as GSK-3beta inhibitors. Among these inhibitors, compound 20x showed highly selective and potent GSK-3beta inhibitory activity in vitro and its binding mode was determined by obtaining the X-ray co-crystal structure of 20x and GSK-3beta.


Journal of Neurochemistry | 2011

A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S )-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease

Tomohiro Onishi; Hiroki Iwashita; Yumiko Uno; Jun Kunitomo; Morihisa Saitoh; Eiji Kimura; Hisashi Fujita; Noriko Uchiyama; Masakuni Kori; Masayuki Takizawa

J. Neurochem. (2011) 10.1111/j.1471‐4159.2011.07532.x


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of potent, selective, orally active benzoxazepine-based Orexin-2 receptor antagonists.

Tatsuhiko Fujimoto; Jun Kunitomo; Yoshihide Tomata; Keiji Nishiyama; Masato Nakashima; Mariko Hirozane; Shin-ichi Yoshikubo; Keisuke Hirai; Shogo Marui

During our efforts to identify a series of potent, selective, orally active human Orexin-2 Receptor (OX2R) antagonists, we elucidated structure-activity relationship (SAR) on the 7-position of a benzoxazepine scaffold by utilizing Hammett σ(p) and Hansch-Fujita π value as aromatic substituent constants. The attempts led to the discovery of compound 1m, possessing good in vitro potency with over 100-fold selectivity against OX1R, good metabolic stability in human and rat liver microsome, good oral bioavailability in rats, and in vivo antagonistic activity in rats by oral administration.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of spiropiperidine-based potent and selective Orexin-2 receptor antagonists.

Tatsuhiko Fujimoto; Yoshihide Tomata; Jun Kunitomo; Mariko Hirozane; Shogo Marui

To generate novel human Orexin-2 Receptor (OX2R) antagonists, a spiropiperidine based scaffold was designed and a SAR study was carried out. Compound 4f possessed the highest OX2R antagonistic activity with an IC(50) value of 3nM with 450-fold selectivity against Orexin-1 Receptor (OX1R).


Journal of Medicinal Chemistry | 2012

Synthesis, Structure–Activity Relationship, and Pharmacological Studies of Novel Melanin-Concentrating Hormone Receptor 1 Antagonists 3-Aminomethylquinolines: Reducing Human Ether-a-go-go-Related Gene (hERG) Associated Liabilities

Shizuo Kasai; Makoto Kamata; Shinichi Masada; Jun Kunitomo; Masahiro Kamaura; Tomohiro Okawa; Kazuaki Takami; Hitomi Ogino; Yoshihide Nakano; Shuntarou Ashina; Kaoru Watanabe; Tomoko Kaisho; Yumi N. Imai; Sunghi Ryu; Masaharu Nakayama; Yasutaka Nagisa; Shiro Takekawa; Koki Kato; Toshiki Murata; Nobuhiro Suzuki; Yuji Ishihara

Recently, we discovered 3-aminomethylquinoline derivative 1, a selective, highly potent, centrally acting, and orally bioavailable human MCH receptor 1 (hMCHR1) antagonist, that inhibited food intake in F344 rats with diet-induced obesity (DIO). Subsequent investigation of 1 was discontinued because 1 showed potent hERG K(+) channel inhibition in a patch-clamp study. To decrease hERG K(+) channel inhibition, experiments with ligand-based drug designs based on 1 and a docking study were conducted. Replacement of the terminal p-fluorophenyl group with a cyclopropylmethoxy group, methyl group introduction on the benzylic carbon at the 3-position of the quinoline core, and employment of a [2-(acetylamino)ethyl]amino group as the amine portion eliminated hERG K(+) channel inhibitory activity in a patch-clamp study, leading to the discovery of N-{3-[(1R)-1-{[2-(acetylamino)ethyl]amino}ethyl]-8-methylquinolin-7-yl}-4-(cyclopropylmethoxy)benzamide (R)-10h. The compound (R)-10h showed potent inhibitory activity against hMCHR1 and dose-dependently suppressed food intake in a 2-day study on DIO-F344 rats. Furthermore, practical chiral synthesis of (R)-10h was performed to determine the molecules absolute configuration.


Bioorganic & Medicinal Chemistry | 2017

Design and synthesis of a novel series of orally active, selective somatostatin receptor 2 agonists for the treatment of type 2 diabetes

Yoshihiro Banno; Shigekazu Sasaki; Makoto Kamata; Jun Kunitomo; Yasufumi Miyamoto; Hidenori Abe; Naohiro Taya; Satoru Oi; Masanori Watanabe; Tomoko Urushibara; Masatoshi Hazama; Shin-Ichi Niwa; Saku Miyamoto; Akira Horinouchi; Ken-Ichi Kuroshima; Nobuyuki Amano; Shin-ichi Matsumoto; Shinichiro Matsunaga

The discovery of a novel series of β-methyltryptophan (β MeTrp) derivatives as selective and orally active non-peptide somatostatin receptor 2 (SSTR2) agonists for the treatment of Type 2 diabetes is described. In our previous research, Compound A, β-MeTrp derivative with highly potent and selective SSTR2 agonistic activity IC50 (SSTR2/SSTR5)=0.3/>100 (nM), was identified asa drug candidate for treatment of Type 2 diabetes which lowers significantly plasma glucose level in Wistar fatty rats in its oral administrations. However, as serious increase in AUC and phospholipidosis (PLsis) were observed in its toxicological studies in rats, follow-up compounds were searched to avoid risk of PLsis with reference to their in vitro PLsis potentials evaluated on the basis of accumulation of phospholipids in HepG2 cells exposed to the compounds. It has been found that introduction of a carbonyl group onto the piperidine and piperazine or aniline moiety of compounds A and B reduced markedly the in vitro PLsis potentials. And further modification of the compounds and their evaluation led to a discovery of compounds 3k with lower in vitro PLsis potentials exhibiting lowering effect of hypoglycemia-induced glucagon secretion in SD rats (ED50=1.1mg/kg) and glucose excursion in meal tolerance test in Wistar fatty diabetic rats (MED=3.0mg/kg) in oral administrations. Compound 3k was selected asa new drug candidate of selective and orally active non-peptide SSTR2 agonists for treatment of Type 2 diabetes with low in vivo PLsis potential.


Bioorganic & Medicinal Chemistry | 2015

Design and synthesis of a novel 2-oxindole scaffold as a highly potent and brain-penetrant phosphodiesterase 10A inhibitor

Masato Yoshikawa; Haruhi Kamisaki; Jun Kunitomo; Hideyuki Oki; Hironori Kokubo; Akihiro Suzuki; Tomomi Ikemoto; Kosuke Nakashima; Naomi Kamiguchi; Akina Harada; Haruhide Kimura; Takahiko Taniguchi

Highly potent and brain-penetrant phosphodiesterase 10A (PDE10A) inhibitors based on the 2-oxindole scaffold were designed and synthesized. (2-Oxo-1,3-oxazolidin-3-yl)phenyl derivative 1 showed the high P-glycoprotein (P-gp) efflux (efflux ratio (ER)=6.2) despite the potent PDE10A inhibitory activity (IC50=0.94 nM). We performed an optimization study to improve both the P-gp efflux ratio and PDE10A inhibitory activity by utilizing structure-based drug design (SBDD) techniques based on the X-ray crystal structure with PDE10A. Finally, 1-(cyclopropylmethyl)-4-fluoro-5-[5-methoxy-4-oxo-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-1(4H)-yl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-one (19e) was identified with improved P-gp efflux (ER=1.4) and an excellent PDE10A inhibitory activity (IC50=0.080 nM). Compound 19e also exhibited satisfactory brain penetration, and suppressed PCP-induced hyperlocomotion with a minimum effective dose of 0.3mg/kg by oral administration in mice.


Bioorganic & Medicinal Chemistry | 2016

Design and synthesis of potent and selective pyridazin-4(1H)-one-based PDE10A inhibitors interacting with Tyr683 in the PDE10A selectivity pocket

Masato Yoshikawa; Takenori Hitaka; Tomoaki Hasui; Makoto Fushimi; Jun Kunitomo; Hironori Kokubo; Hideyuki Oki; Kosuke Nakashima; Takahiko Taniguchi

Utilizing structure-based drug design techniques, we designed and synthesized phosphodiesterase 10A (PDE10A) inhibitors based on pyridazin-4(1H)-one. These compounds can interact with Tyr683 in the PDE10A selectivity pocket. Pyridazin-4(1H)-one derivative 1 was linked with a benzimidazole group through an alkyl spacer to interact with the OH of Tyr683 and fill the PDE10A selectivity pocket. After optimizing the linker length, we identified 1-(cyclopropylmethyl)-5-[3-(1-methyl-1H-benzimidazol-2-yl)propoxy]-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (16f) as having highly potent PDE10A inhibitory activity (IC50=0.76nM) and perfect selectivity against other PDEs (>13,000-fold, IC50=>10,000nM). The crystal structure of 16f bound to PDE10A revealed that the benzimidazole moiety was located deep within the PDE10A selectivity pocket and interacted with Tyr683. Additionally, a bidentate interaction existed between the 5-alkoxypyridazin-4(1H)-one moiety and the conserved Gln716 present in all PDEs.


Alzheimers & Dementia | 2011

A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(s)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1,3,4-oxadiazole (mmbo) decreased tau phosphorylation and ameliorated cognitive deficits in a transgenic model of Alzheimer's disease

Tomohiro Onishi; Hiroki Iwashita; Yumiko Uno; Jun Kunitomo; Morihisa Saitoh; Eiji Kimura; Hisashi Fujita; Noriko Uchiyama; Masakuni Kori; Masayuki Takizawa

potential epitope specificity and safety of this promising therapeutic effect, we are examining several tau epitopes. Here we assessed the efficacy of using a pseudo-phosphorylated tau immunogen. Methods: Homozygous JNPL3 mice were immunized with Tau379-408[ESer396, E-Ser404] in alum adjuvant (n 1⁄4 13) or with adjuvant only (n 1⁄4 7), starting at 2 months. Mice were tested on various sensorimotor tasks (rotarod, traverse beam, locomotor activity and grip strength) at 5 and 8 months of age. Antibody titers were determined and at 8 months their brains were processed for tau biochemistry and histology. Results: The vaccine elicited a robust antibody response towards the immunogen, and its phosphorylated and non-phosphorylated analogs. Which is as expected since this region of the tau protein is highly immunogenic. The immunized mice had a 24% reduction in soluble PHF1/total tau ratio on western blots (p 1⁄4 0.04), and a 42% reduction in PHF1 immunostaining in the dentate gyrus (p < 0.03), compared to alum-treated mice. Levels of sarkosyl insoluble human and total tau were highly variable in both groups and not significantly different. Biochemical and histological analyses with other antibodies and of other brain regions is underway. Disappointingly, potential improvements in motor function of the immunized mice could not be assessed since the animals did not develop overt signs of such impairments at the ages tested, in contrast to our previous observation in the same homozygous model (Asuni A. et al., J. Neurosci., 2007). Unfortunately, such changes in phenotype are commonly observed in transgenic mice.Conclusions: These findings indicate that immunological targeting using a pseudo-phosphorylated tau epitope can reduce pathological tau within the brain, further supporting the feasibility of tau immunotherapy.

Collaboration


Dive into the Jun Kunitomo's collaboration.

Top Co-Authors

Avatar

Takahiko Taniguchi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Eiji Kimura

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Makoto Fushimi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masato Yoshikawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Morihisa Saitoh

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Fumio Itoh

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hiroki Iwashita

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomoaki Hasui

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hironori Kokubo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masakuni Kori

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge