Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takahiko Taniguchi is active.

Publication


Featured researches published by Takahiko Taniguchi.


Nuclear Medicine and Biology | 2015

Characterization of the binding properties of T-773 as a PET radioligand for phosphodiesterase 10A

Akina Harada; Kazunori Suzuki; Shotaro Miura; Tomoaki Hasui; Naomi Kamiguchi; Tsuyoshi Ishii; Takahiko Taniguchi; Takanobu Kuroita; Akihiro Takano; Vladimir Stepanov; Christer Halldin; Haruhide Kimura

INTRODUCTION Phosphodiesterase 10A (PDE10A) is a dual-substrate PDE that hydrolyzes both cAMP and cGMP and is selectively expressed in striatal medium spiny neurons. Recent studies have suggested that PDE10A inhibition is a novel approach for the treatment of disorders such as schizophrenia and Huntingtons disease. A positron emission tomography (PET) occupancy study can provide useful information for the development of PDE10A inhibitors. We discovered T-773 as a candidate PET radioligand for PDE10A and investigated its properties by in vitro autoradiography and a PET study in a monkey. METHODS Profiling of T-773 as a PET radioligand for PDE10A was conducted by in vitro enzyme inhibitory assay, in vitro autoradiography, and PET study in a monkey. RESULTS T-773 showed a high binding affinity and selectivity for human recombinant PDE10A2 in vitro; the IC50 value in an enzyme inhibitory assay was 0.77nmol/L, and selectivity over other PDEs was more than 2500-fold. In autoradiography studies using mouse, rat, monkey, or human brain sections, radiolabeled T-773 selectively accumulated in the striatum. This selective accumulation was not observed in the brain sections of Pde10a-KO mice. The binding of [(3)H]T-773 to PDE10A in rat brain sections was competitively inhibited by MP-10, a selective PDE10A inhibitor. In rat brain sections, [(3)H]T-773 bound to a single high affinity site of PDE10A with Kd values of 12.2±2.2 and 4.7±1.2nmol/L in the caudate-putamen and nucleus accumbens, respectively. In a monkey PET study, [(11)C]T-773 showed good brain penetration and striatum-selective accumulation. CONCLUSION These results suggest that [(11)C]T-773 is a potential PET radioligand for PDE10A.


PLOS ONE | 2015

Characterization of binding and inhibitory properties of TAK-063, a novel phosphodiesterase 10A inhibitor.

Akina Harada; Kazunori Suzuki; Naomi Kamiguchi; Maki Miyamoto; Kimio Tohyama; Kosuke Nakashima; Takahiko Taniguchi; Haruhide Kimura

Phosphodiesterase 10A (PDE10A) inhibition is a novel and promising approach for the treatment of central nervous system disorders such as schizophrenia and Huntington’s disease. A novel PDE10A inhibitor, TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)-pyridazin-4(1H)-one] has shown high inhibitory activity and selectivity for human recombinant PDE10A2 in vitro; the half-maximal inhibitory concentration was 0.30 nM, and selectivity over other phosphodiesterases (PDEs) was more than 15000-fold. TAK-063 at 10 µM did not show more than 50% inhibition or stimulation of 91 enzymes or receptors except for PDEs. In vitro autoradiography (ARG) studies using rat brain sections revealed that [3H]TAK-063 selectively accumulated in the caudate putamen (CPu), nucleus accumbens (NAc), globus pallidus, substantia nigra, and striatonigral projection, where PDE10A is highly expressed. This [3H]TAK-063 accumulation was almost entirely blocked by an excess amount of MP-10, a PDE10A selective inhibitor, and the accumulation was not observed in brain slices of Pde10a-knockout mice. In rat brain sections, [3H]TAK-063 bound to a single high-affinity site with mean ± SEM dissociation constants of 7.2 ± 1.2 and 2.6 ± 0.5 nM for the CPu and NAc shell, respectively. Orally administered [14C]TAK-063 selectively accumulated in PDE10A expressing brain regions in an in vivo ARG study in rats. Striatal PDE10A occupancy by TAK-063 in vivo was measured using T-773 as a tracer and a dose of 0.88 mg/kg (p.o.) was calculated to produce 50% occupancy in rats. Translational studies with TAK-063 and other PDE10A inhibitors such as those presented here will help us better understand the pharmacological profile of this class of potential central nervous system drugs.


Synapse | 2015

Evaluation of a novel PDE10A PET radioligand, [11C]T-773, in nonhuman primates: Brain and whole body PET and brain autoradiography

Akihiro Takano; Vladimir Stepanov; Balázs Gulyás; Ryuji Nakao; Nahid Amini; Shotaro Miura; Haruhide Kimura; Takahiko Taniguchi; Christer Halldin

Phosphodiesterase 10A (PDE10A) is considered to be a key target for the treatment of several neuropsychiatric diseases. The characteristics of [11C]T‐773, a novel positron emission tomography (PET) radioligand with high binding affinity and selectivity for PDE10A, were evaluated in autoradiography and in nonhuman primate (NHP) PET. Brain PET measurements were performed under baseline conditions and after administration of a selective PDE10A inhibitor, MP‐10. Total distribution volume (VT) and binding potential (BPND) were calculated using various kinetic models. Whole body PET measurements were performed to calculate the effective dose of [11C]T‐773. Autoradiography studies in postmortem human and monkey brain sections showed high accumulation of [11C]T‐773 in the striatum and substantia nigra which was blocked by MP‐10. Brain PET showed high accumulation of [11C]T‐773 in the striatum, and the data could be fitted using a two tissue compartment model. BPND was approximately 1.8 in the putamen when the cerebellum was used as the reference region. Approximately 70% of PDE10A binding was occupied by 1.8 mg/kg of MP‐10. Whole body PET showed high accumulation of [11C]T‐773 in the liver, kidney, heart, and brain in the initial phase. The radioligand was partly excreted via bile and the gastrointestinal tract, and partly excreted through the urinary tract. The calculated effective dose was 0.007 mSv/MBq. In conclusion, [11C]T‐773 was demonstrated to be a promising PET radioligand for PDE10A with favorable brain kinetics. Dosimetry results support multiple PET measurements per person in human studies. Further research is required with [11C]T‐773 in order to test the radioligands potential clinical applications. Synapse 69:345–355, 2015.


Molecular Imaging and Biology | 2015

Molecular Imaging of PDE10A Knockout Mice with a Novel PET Radiotracer: [ 11 C]T-773

Miklós Tóth; Jenny Häggkvist; Vladimir Stepanov; Akihiro Takano; Ryuji Nakao; Nahid Amini; Shotaro Miura; Haruhide Kimura; Takahiko Taniguchi; Balázs Gulyás; Christer Halldin

Purpose[11C]T-773 is a new radioligand for positron emission tomography (PET) targeting the phosphodiesterase 10A enzyme (PDE10A). PDE10A is highly expressed in the striatum by medium spiny neurons, and it has been demonstrated to be involved in the regulation of striatal signaling through the reduction of medium spiny neuronal sensitivity towards glutamatergic excitation. PDE10A is associated with Parkinson’s disease and different neuropsychiatric disorders such as Huntington’s disease, obsessive-compulsive disorders (OCD) and schizophrenia. Studies have indicated that the inhibition of PDE10A may represent a novel therapeutic approach to the treatment of the aforementioned diseases characterized by the reduced activity of medium spiny neurons. An appropriate PET radioligand for PDE10A would help to facilitate drug development and drug evaluation.ProceduresWe have evaluated the [11C]T-773 ligand in PDE10A knockout mice (heterozygous [HET] and homozygous [HOM]) as well as in normal control animals (WILD) with PET.ResultsThe regional percent standardized uptake values (%SUV; mean ± SD) in the striatum were 48.2 ± 1.0 (HOM), 63.6 ± 5.3 (HET) and 85.1 ± 6.3 (WILD). Between each animal group the striatal %SUV values were significantly different (p < 0.0001). The striatal BPND values (mean ± SD) were 0.0 ± 0.0 (HOM), 0.14 ± 0.07 (HET) and 0.56 ± 0.15 (WILD). The BPND values were significantly lower in homozygous and heterozygous animals compared to wild type (p < 0.0001).ConclusionsThe novel PDE10A radioligand [11C]T-773 shows increased signals with higher levels of PDE10A and acceptable binding in the striatum in control animals compared to knockout mice.


Journal of Labelled Compounds and Radiopharmaceuticals | 2015

Development of a series of novel carbon-11 labeled PDE10A inhibitors

Vladimir Stepanov; Shotaro Miura; Akihiro Takano; Nahid Amini; Ryuji Nakao; Tomoaki Hasui; Kosuke Nakashima; Takahiko Taniguchi; Haruhide Kimura; Takanobu Kuroita; Christer Halldin

Phosphodiesterase 10A (PDE10A) is a member of the PDE family of enzymes that degrades cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Our aim was to label a series of structurally related PDE10A inhibitors with carbon-11 and evaluate them as potential positron emission tomography (PET) radioligands for PDE10A using nonhuman primates. The series consisted of seven compounds based on the 3-(1H-pyrazol-5-yl)pyridazin-4(1H)-one backbone. These compounds were selected from the initial larger library based on a number of parameters such as affinity, selectivity for hPDE10A in in vitro tests, lipophilicity, and on the results of multidrug resistance protein 1 (MDR1)-LLCPK1 and the parallel artificial membrane permeability assays. Seven radioligands (KIT-1, 3, 5, 6, 7, 9, and 12) were radiolabeled with carbon-11 employing O-methylation on the hydroxyl moiety using [(11)C]methyl triflate. In vivo examination of each radioligand was performed using PET in rhesus monkeys; analysis of radiometabolites in plasma also was conducted using HPLC. All seven radioligands were labeled with high (>90%) incorporation of [(11)C]methyl triflate into their appropriate precursors and with high specific radioactivity. Carbon-11 labeled KIT-5 and KIT-6 showed high accumulation in the striatum, consistent with the known anatomical distribution of PDE10A in brain, accompanied by fast washout and high specific binding ratio. In particular [(11)C]KIT-6, named [(11)C]T-773, is a promising PET tool for further examination of PDE10A in human brain.


Journal of Pharmacology and Experimental Therapeutics | 2018

Phosphodiesterase 2A Inhibitor TAK-915 Ameliorates Cognitive Impairments and Social Withdrawal in N-Methyl-d-Aspartate Receptor Antagonist–Induced Rat Models of Schizophrenia

Masato Nakashima; Haruka Imada; Eri Shiraishi; Yuki Ito; Noriko Suzuki; Maki Miyamoto; Takahiko Taniguchi; Hiroki Iwashita

The pathophysiology of schizophrenia has been associated with glutamatergic dysfunction. Modulation of the glutamatergic signaling pathway, including N-methyl-d-aspartate (NMDA) receptors, can provide a new therapeutic target for schizophrenia. Phosphodiesterase 2A (PDE2A) is highly expressed in the forebrain, and is a dual substrate enzyme that hydrolyzes both cAMP and cGMP, which play pivotal roles as intracellular second messengers downstream of NMDA receptors. Here we characterize the in vivo pharmacological profile of a selective and brain-penetrant PDE2A inhibitor, (N-{(1S)-1-[3-fluoro-4-(trifluoromethoxy)phenyl]-2-methoxyethyl}-7-methoxy-2-oxo-2,3-dihydropyrido[2,3-b]pyrazine-4(1H)-carboxamide) (TAK-915) as a novel treatment of schizophrenia. Oral administration of TAK-915 at 3 and 10 mg/kg significantly increased cGMP levels in the frontal cortex, hippocampus, and striatum of rats. TAK-915 at 10 mg/kg significantly upregulated the phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor subunit GluR1 in the rat hippocampus. TAK-915 at 3 and 10 mg/kg significantly attenuated episodic memory deficits induced by the NMDA receptor antagonist (+)-MK-801 hydrogen maleate (MK-801) in the rat passive avoidance test. TAK-915 at 10 mg/kg significantly attenuated working memory deficits induced by MK-801 in the rat radial arm maze test. Additionally, TAK-915 at 10 mg/kg prevented subchronic phencyclidine-induced social withdrawal in social interaction in rats. In contrast, TAK-915 did not produce antipsychotic-like activity; TAK-915 had little effect on MK-801- or methamphetamine-induced hyperlocomotion in rats. These results suggest that TAK-915 has a potential to ameliorate cognitive impairments and social withdrawal in schizophrenia.


Bioorganic & Medicinal Chemistry | 2015

Design and synthesis of a novel 2-oxindole scaffold as a highly potent and brain-penetrant phosphodiesterase 10A inhibitor

Masato Yoshikawa; Haruhi Kamisaki; Jun Kunitomo; Hideyuki Oki; Hironori Kokubo; Akihiro Suzuki; Tomomi Ikemoto; Kosuke Nakashima; Naomi Kamiguchi; Akina Harada; Haruhide Kimura; Takahiko Taniguchi

Highly potent and brain-penetrant phosphodiesterase 10A (PDE10A) inhibitors based on the 2-oxindole scaffold were designed and synthesized. (2-Oxo-1,3-oxazolidin-3-yl)phenyl derivative 1 showed the high P-glycoprotein (P-gp) efflux (efflux ratio (ER)=6.2) despite the potent PDE10A inhibitory activity (IC50=0.94 nM). We performed an optimization study to improve both the P-gp efflux ratio and PDE10A inhibitory activity by utilizing structure-based drug design (SBDD) techniques based on the X-ray crystal structure with PDE10A. Finally, 1-(cyclopropylmethyl)-4-fluoro-5-[5-methoxy-4-oxo-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-1(4H)-yl]-3,3-dimethyl-1,3-dihydro-2H-indol-2-one (19e) was identified with improved P-gp efflux (ER=1.4) and an excellent PDE10A inhibitory activity (IC50=0.080 nM). Compound 19e also exhibited satisfactory brain penetration, and suppressed PCP-induced hyperlocomotion with a minimum effective dose of 0.3mg/kg by oral administration in mice.


Bioorganic & Medicinal Chemistry | 2016

Design and synthesis of potent and selective pyridazin-4(1H)-one-based PDE10A inhibitors interacting with Tyr683 in the PDE10A selectivity pocket

Masato Yoshikawa; Takenori Hitaka; Tomoaki Hasui; Makoto Fushimi; Jun Kunitomo; Hironori Kokubo; Hideyuki Oki; Kosuke Nakashima; Takahiko Taniguchi

Utilizing structure-based drug design techniques, we designed and synthesized phosphodiesterase 10A (PDE10A) inhibitors based on pyridazin-4(1H)-one. These compounds can interact with Tyr683 in the PDE10A selectivity pocket. Pyridazin-4(1H)-one derivative 1 was linked with a benzimidazole group through an alkyl spacer to interact with the OH of Tyr683 and fill the PDE10A selectivity pocket. After optimizing the linker length, we identified 1-(cyclopropylmethyl)-5-[3-(1-methyl-1H-benzimidazol-2-yl)propoxy]-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (16f) as having highly potent PDE10A inhibitory activity (IC50=0.76nM) and perfect selectivity against other PDEs (>13,000-fold, IC50=>10,000nM). The crystal structure of 16f bound to PDE10A revealed that the benzimidazole moiety was located deep within the PDE10A selectivity pocket and interacted with Tyr683. Additionally, a bidentate interaction existed between the 5-alkoxypyridazin-4(1H)-one moiety and the conserved Gln716 present in all PDEs.


Nuclear Medicine and Biology | 2018

Development of two fluorine-18 labeled PET radioligands targeting PDE10A and in vivo PET evaluation in nonhuman primates

Vladimir Stepanov; Akihiro Takano; Ryuji Nakao; Nahid Amini; Shotaro Miura; Tomoaki Hasui; Haruhide Kimura; Takahiko Taniguchi; Christer Halldin

INTRODUCTION Phosphodiesterase 10A (PDE10A) is a member of the PDE enzyme family that degrades cyclic adenosine and guanosine monophosphates (cAMP and cGMP). Based on the successful development of [11C]T-773 as PDE10A positron emission tomography (PET) radioligand, in this study our aim was to develop and evaluate fluorine-18 analogs of [11C]T-773. METHODS [18F]FM-T-773-d2 and [18F]FE-T-773-d4 were synthesized from the same precursor used for 11C-labeling of T-773 in a two-step approach via 18F-fluoromethylation and 18F-fluoroethylation, respectively, using corresponding deuterated synthons. A total of 12 PET measurements were performed in seven non-human primates. First, baseline PET measurements were performed using High Resolution Research Tomograph system with both [18F]FM-T-773-d2 and [18F]FE-T-773-d4; the uptake in whole brain and separate brain regions, as well as the specific binding and tissue ratio between putamen and cerebellum, was examined. Second, baseline and pretreatment PET measurements using MP-10 as the blocker were performed for [18F]FM-T-773-d2 including arterial blood sampling with radiometabolite analysis in four NHPs. RESULTS Both [18F]FM-T-773-d2 and [18F]FE-T-773-d4 were successfully radiolabeled with an average molar activity of 293 ± 114 GBq/μmol (n=8) for [18F]FM-T-773-d2 and 209 ± 26 GBq/μmol (n=4) for [18F]FE-T-773-d4, and a radiochemical yield of 10% (EOB, n=12, range 3%-16%). Both radioligands displayed high brain uptake (~5.5% of injected radioactivity for [18F]FM-T-773-d2 and ~3.5% for [18F]FE-T-773-d4 at the peak) and a fast washout. Specific binding reached maximum within 30 min for [18F]FM-T-773-d2 and after approximately 45 min for [18F]FE-T-773-d4. [18F]FM-T-773-d2 data fitted well with kinetic compartment models. BPND values obtained indirectly through compartment models were correlated well with those obtained by SRTM. BPND calculated with SRTM was 1.0-1.7 in the putamen. The occupancy with 1.8 mg/kg of MP-10 was approximately 60%. CONCLUSIONS [18F]FM-T-773-d2 and [18F]FE-T-773-d4 were developed as fluorine-18 PET radioligands for PDE10A, with the [18F]FM-T-773-d2 being the more promising PET radioligand warranting further evaluation.


Journal of Medicinal Chemistry | 2014

Discovery of 1-[2-Fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (TAK-063), a Highly Potent, Selective, and Orally Active Phosphodiesterase 10A (PDE10A) Inhibitor

Jun Kunitomo; Masato Yoshikawa; Makoto Fushimi; Akira Kawada; John F. Quinn; Hideyuki Oki; Hironori Kokubo; Mitsuyo Kondo; Kosuke Nakashima; Naomi Kamiguchi; Kazunori Suzuki; Haruhide Kimura; Takahiko Taniguchi

Collaboration


Dive into the Takahiko Taniguchi's collaboration.

Top Co-Authors

Avatar

Tomoaki Hasui

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Haruhide Kimura

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Jun Kunitomo

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shotaro Miura

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masato Yoshikawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kosuke Nakashima

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Makoto Fushimi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Satoshi Mikami

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Akihiro Takano

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge