Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Nishioka is active.

Publication


Featured researches published by Jun Nishioka.


Journal of Geophysical Research | 2005

Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment

Hein J. W. de Baar; Philip W. Boyd; Kenneth H. Coale; Michael R. Landry; Atsushi Tsuda; Philipp Assmy; Dorothee C. E. Bakker; Yann Bozec; Richard T. Barber; Mark A. Brzezinski; Ken O. Buesseler; Marie Boye; Peter Croot; Frank Gervais; Maxim Y. Gorbunov; Paul J. Harrison; William Thomas Hiscock; Patrick Laan; Christiane Lancelot; Cliff S. Law; Maurice Levasseur; Adrian Marchetti; Frank J. Millero; Jun Nishioka; Yukihiro Nojiri; Tim van Oijen; Ulf Riebesell; Micha J. A. Rijkenberg; Hiroaki Saito; Shingenobu Takeda

Comparison of eight iron experiments shows that maximum Chl a, the maximum DIC removal, and the overall DIC/Fe efficiency all scale inversely with depth of the wind mixed layer (WML) defining the light environment. Moreover, lateral patch dilution, sea surface irradiance, temperature, and grazing play additional roles. The Southern Ocean experiments were most influenced by very deep WMLs. In contrast, light conditions were most favorable during SEEDS and SERIES as well as during IronEx-2. The two extreme experiments, EisenEx and SEEDS, can be linked via EisenEx bottle incubations with shallower simulated WML depth. Large diatoms always benefit the most from Fe addition, where a remarkably small group of thriving diatom species is dominated by universal response of Pseudo-nitzschia spp. Significant response of these moderate (10–30 μm), medium (30–60 μm), and large (>60 μm) diatoms is consistent with growth physiology determined for single species in natural seawater. The minimum level of “dissolved” Fe (filtrate < 0.2 μm) maintained during an experiment determines the dominant diatom size class. However, this is further complicated by continuous transfer of original truly dissolved reduced Fe(II) into the colloidal pool, which may constitute some 75% of the “dissolved” pool. Depth integration of carbon inventory changes partly compensates the adverse effects of a deep WML due to its greater integration depths, decreasing the differences in responses between the eight experiments. About half of depth-integrated overall primary productivity is reflected in a decrease of DIC. The overall C/Fe efficiency of DIC uptake is DIC/Fe ∼ 5600 for all eight experiments. The increase of particulate organic carbon is about a quarter of the primary production, suggesting food web losses for the other three quarters. Replenishment of DIC by air/sea exchange tends to be a minor few percent of primary CO2 fixation but will continue well after observations have stopped. Export of carbon into deeper waters is difficult to assess and is until now firmly proven and quite modest in only two experiments.


Marine Chemistry | 2001

Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron

Jun Nishioka; Shigenobu Takeda; Chi Shing Wong; W.K Johnson

Abstract The spatial and temporal changes in vertical distribution of soluble Fe ( 0.2 μm, labile at pH 3.2) were observed in deep water at coastal stations both in September 1998 and February 1999. These results suggest that soluble and small colloidal Fe vary spatially and temporally. Particularly, in our observation, the soluble Fe has temporal changes in open ocean seawater while the small colloidal and large labile particulate Fe has spatial changes at coastal area. Thus, we need to consider the existence of small colloidal Fe in the dissolved Fe fraction (


Deep-sea Research Part I-oceanographic Research Papers | 2003

Iron(III) hydroxide solubility and humic-type fluorescent organic matter in the deep water column of the Okhotsk Sea and the northwestern North Pacific Ocean

Heihachiro Tani; Jun Nishioka; Kenshi Kuma; Hyoe Takata; Youhei Yamashita; Eiichiro Tanoue; Takashi Midorikawa

Abstract Vertical distributions of Fe(III) hydroxide solubility were studied in the Okhotsk Sea and the northwestern North Pacific Ocean during May and June 2000. Fe(III) solubility minima (0.35– 0.45 nM ) were present in a narrow depth range (80– 100 m ) below the surface mixed layer at all stations. In general, the Fe(III) solubility levels in intermediate and deep waters are characterized by mid-depth maxima (0.76– 0.86 nM ) at 800– 1250 m depth and, below that, a slight decrease to 0.4– 0.6 nM with depth in association with increase in nutrient, apparent oxygen utilization (AOU) and humic-type fluorescence intensity. The most significant correlation between the Fe(III) solubility and humic-type fluorescence in intermediate and deep waters suggests that the distribution of humic-type fluorescent organic matter may control the distribution of Fe(III) solubility in deep ocean waters. The solubility profiles reveal that dissolved Fe concentrations in deep ocean waters may be controlled primarily by Fe(III) complexation with natural organic ligands, such as marine dissolved humic substances released through the oxidative decomposition and transformation of biogenic organic matter in intermediate and deep waters. In addition, high Fe(III) hydroxide solubility values (1.0– 1.6 nM ) were observed in the surface mixed layer at a station in the northwestern North Pacific Ocean where a phytoplankton bloom was observed. The higher Fe(III) solubility in the surface waters was probably due to a higher concentration or stronger affinity of natural organic Fe(III) chelators, which may be released by dominant phytoplankton and/or bacteria during the spring bloom and probably have a different chemical composition from those found in intermediate and deep waters.


Journal of Geophysical Research | 2009

Size dependence of iron solubility of Asian mineral dust particles

Atsushi Ooki; Jun Nishioka; Tsuneo Ono; Shinichiro Noriki

[1] Asian mineral dust was sampled at Hokkaido, northern Japan, in spring 2004 and 2006. Iron solubility of the bulk aerosol, the size-segregated aerosol (0.45 4.7 μm). We suggest that an iron solubility of around 0.4% is typical for Asian mineral dust of large particles transported to Hokkaido. In the high-nutrient low-chlorophyll region of the western subarctic North Pacific near the Asian continent, where the mineral dust deposition is dominated by large particles, the iron solubility of the mineral dust entering the ocean is around 0.4%.


Water Research | 1998

Riverine input of bioavailable iron supporting phytoplankton growth in Kesennuma Bay (Japan)

Katsuhiko Matsunaga; Jun Nishioka; Kenshi Kuma; Kenji Toya; Yoshihiro Suzuki

Abstract The effects of riverain iron and nutrient inputs on phytoplankton growth in Kesennuma Bay were studied. The effects of iron and fulvic acid-iron complex additions on phytoplankton growth were studied in iron-enriched and -limited culture experiments of coastal marine diatom Chaetoceros sp. (the dominant species inside and outside of the bay) using media prepared from bay and outer waters. Bay water is not iron-limited. The addition of Fe(III) to bay water or autoclaved bay water gave no increase in cell yield. However, when bay water was autoclaved after UV-irradiation, there was little growth. This suggests that the UV irradiation destroyed organic compounds that affected iron bioavailability. Outer water is iron-limited. The addition of Fe(III) to outer water increased cell yield and iron-enriched outer water prepared by autoclaving after adding fulvic acid-Fe increased also cell yield. When outer water after adding Fe(III) was autoclaved, there was little growth. This suggests that fulvic acid made the iron bioavailable. The riverain inputs of organically bound iron, such as fulvic acid-Fe, and nutrients probably play an important role for supporting phytoplankton growth in the bay.


Journal of Experimental Marine Biology and Ecology | 2002

Grazing impact of microzooplankton on a diatom bloom in a mesocosm as estimated by pigment-specific dilution technique

Koji Suzuki; Atsushi Tsuda; Hiroshi Kiyosawa; Shigenobu Takeda; Jun Nishioka; Toshiro Saino; Masayuki Mac Takahashi; C. S. Wong

To investigate the impact of microzooplankton grazing on phytoplankton bloom in coastal waters, an enclosure experiment was conducted in Saanich Inlet, Canada during the summer of 1996. Daily changes in the microzooplankton grazing rate on each phytoplankton group were investigated with the growth rates of each phytoplankton group from the beginning toward the end of bloom using the dilution technique with high-performance liquid chromatography (HPLC). On Day 1 when nitrate and iron were artificially added, chlorophyll a concentration was relatively low (4.3 μg l−1) and 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes were predominant in the chlorophyll biomass. However, both the synthetic rates and concentrations of 19′-hexanoyloxyfucoxanthin declined before bloom, suggesting that 19′-hexanoyloxyfucoxanthin-containing prymnesiophytes weakened. Chlorophyll a concentration peaked at 23 μg l−1 on Day 4 and the bloom consisted of the small chain-forming diatoms Chaetoceros spp. (4 μm in cell diameter). Diatoms were secondary constituents in the chlorophyll biomass at the beginning of the experiment, and the growth rates of diatoms (fucoxanthin) were consistently high (>0.5 d−1) until Day 3. Microzooplankton grazing rates on each phytoplankton group remarkably increased except on alloxanthin-containing cryptophytes after the nutrient enrichments, and peaked with >0.6 d−1 on Day 3, indicating that >45% of the standing stock of each phytoplankton group was removed per day. Both the growth and mortality rates of alloxanthin-containing cryptophytes were relatively high (>1 and >0.5 d−1, respectively) until the bloom, suggesting that a homeostatic mechanism might exist between predators and their prey. Overall, microzooplankton grazing showed a rapid response to the increase in phytoplankton abundance after the nutrient enrichments, and affected the magnitude of the bloom significantly. High grazing activity of microzooplankton contributed to an increase in the abundance of heterotrophic dinoflagellates with 7–24 μm in cell size, the fraction of large-sized (>10 μm) chlorophyll a, and stimulated the growth of larger-sized ciliates after the bloom.


Scientific Reports | 2015

Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean

Nanako Hioki; Kenshi Kuma; Yuichirou Morita; Ryouhei Sasayama; Atsushi Ooki; Y. Kondo; Hajime Obata; Jun Nishioka; Youhei Yamashita; Shigeto Nishino; Takashi Kikuchi; Michio Aoyama

The location and magnitude of oceanic iron sources remain uncertain owing to a scarcity of data, particularly in the Arctic Ocean. The formation of cold, dense water in the subsurface layer of the western Arctic Ocean is a key process in the lateral transport of iron, macronutrients, and other chemical constituents. Here, we present iron, humic-like fluorescent dissolved organic matter, and nutrient concentration data in waters above the continental slope and shelf and along two transects across the shelf–basin interface in the western Arctic Ocean. We detected high concentrations in shelf bottom waters and in a plume that extended in the subsurface cold dense water of the halocline layer in slope and basin regions. At σθ = 26.5, dissolved Fe, humic-like fluorescence intensity, and nutrient maxima coincided with N* minima (large negative values of N* indicate significant denitrification within shelf sediments). These results suggest that these constituents are supplied from the shelf sediments and then transported laterally to basin regions. Humic dissolved organic matter probably plays the most important role in the subsurface maxima and lateral transport of dissolved Fe in the halocline layer as natural Fe-binding organic ligand.


Journal of Geophysical Research | 2011

Mechanisms controlling dissolved iron distribution in the North Pacific: A model study

K. Misumi; Daisuke Tsumune; Yoshikatsu Yoshida; Keisuke Uchimoto; Tomohiro Nakamura; Jun Nishioka; Humio Mitsudera; Frank O. Bryan; Keith Lindsay; J. K. Moore; Scott C. Doney

Mechanisms controlling the dissolved iron distribution in the North Pacific are investigated using the Biogeochemical Elemental Cycling (BEC) model with a resolution of approximately 1° in latitude and longitude and 60 vertical levels. The model is able to reproduce the general distribution of iron as revealed in available field data: surface concentrations are generally below 0.2 nM; concentrations increase with depth; and values in the lower pycnocline are especially high in the northwestern Pacific and off the coast of California. Sensitivity experiments changing scavenging regimes and external iron sources indicate that lateral transport of sedimentary iron from continental margins into the open ocean causes the high concentrations in these regions. This offshore penetration only appears under a scavenging regime where iron has a relatively long residence time at high concentrations, namely, the order of years. Sedimentary iron is intensively supplied around continental margins, resulting in locally high concentrations; the residence time with respect to scavenging determines the horizontal scale of elevated iron concentrations. Budget analysis for iron reveals the processes by which sedimentary iron is transported to the open ocean. Horizontal mixing transports sedimentary iron from the boundary into alongshore currents, which then carry high iron concentrations into the open ocean in regions where the alongshore currents separate from the coast, most prominently in the northwestern Pacific and off of California.


Journal of Oceanography | 2013

Impacts of elevated CO 2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters

Takeshi Yoshimura; Koji Suzuki; Hiroshi Kiyosawa; Tsuneo Ono; Hiroshi Hattori; Kenshi Kuma; Jun Nishioka

Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.


Journal of Experimental Marine Biology and Ecology | 2001

Change in the concentrations of iron in different size fractions during a phytoplankton bloom in controlled ecosystem enclosures

Jun Nishioka; Shigenobu Takeda; C.S. Wong

To observe micronutrient dynamics in the plankton ecosystem, controlled ecosystem enclosure (CEE) experiments were conducted in Saanich Inlet, B.C., Canada. Two CEEs (2.5 m in diameter, 16 m in length, one for Fe studies and the other for biological studies) were launched for the period 22 July to 5 August 1996 and enriched with 10 µM nitrate and 5.2 nM Fe (13% of total Fe) on day 1. Sampling from three integrated depths, intervals 0-4, 4-8 and 8-12 m, was performed on days 0, 1, 2, 3, 4, 5, 7, 9 and 11. Iron concentrations were measured for five size fractions: >25 µm particles, 2-25 µm particles, 0.2-2 µm particles, 0.2 µm-200 kDa small colloidal particles and <200 kDa soluble species. The sediment in the Fe enclosure was also collected on every sampling day after day 2 and its Fe was determined. Size-fractionated particulate organic carbon and total chlorophyll-a were also analyzed.The Fe in small colloidal particles (200 kDa-0.2 µm) comprised 78% of the traditionally defined dissolved phase (<0.2 µm) on day 1. Of all the size fractions of Fe, the small colloidal particulate fraction decreased most significantly during the phytoplankton bloom. In the dissolved fraction (<0.2 µm), the small colloidal particle fraction comprised 79% of the decrease. The decrease in concentration of Fe in small colloidal particles was larger than that of total Fe from day 1 to day 4. In contrast, the >25 µm Fe particles increased over the same period. These results suggest that Fe in small colloidal particles changed to >25 µm Fe particles during phytoplankton growth. A large amount of Fe was kept in the surface layer with the phytoplankton, and transported to the deep layer by phytoplankton sedimentation, at the end of the bloom. From these results, the small colloidal particulate Fe seems to be the most dynamic size fraction and a high percentage of Fe in small colloidal particles changed to large particles due to chemical/physical aggregation and/or physical adsorption to suspended particles such as phytoplankton cells.

Collaboration


Dive into the Jun Nishioka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Yoshimura

Central Research Institute of Electric Power Industry

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Tsumune

Central Research Institute of Electric Power Industry

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge