Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Qiao is active.

Publication


Featured researches published by Jun Qiao.


PLOS ONE | 2013

Knockdown of Myostatin Expression by RNAi Enhances Muscle Growth in Transgenic Sheep

Shengwei Hu; Wei Ni; Wujiafu Sai; Ha Zi; Jun Qiao; Pengyang Wang; Jinliang Sheng; Chuangfu Chen

Myostatin (MSTN) has been shown to be a negative regulator of skeletal muscle development and growth. MSTN dysfunction therefore offers a strategy for promoting animal growth performance in livestock production. In this study, we investigated the possibility of using RNAi-based technology to generate transgenic sheep with a double-muscle phenotype. A shRNA expression cassette targeting sheep MSTN was used to generate stable shRNA-expressing fibroblast clones. Transgenic sheep were further produced by somatic cell nuclear transfer (SCNT) technology. Five lambs developed to term and three live lambs were obtained. Integration of shRNA expression cassette in three live lambs was confirmed by PCR. RNase protection assay showed that the shRNAs targeting MSTN were expressed in muscle tissues of three transgenic sheep. MSTN expression was significantly inhibited in muscle tissues of transgenic sheep when compared with control sheep. Moreover, transgenic sheep showed a tendency to faster increase in body weight than control sheep. Histological analysis showed that myofiber diameter of transgenic sheep M17 were bigger than that of control sheep. Our findings demonstrate a promising approach to promoting muscle growth in livestock production.


Cellular & Molecular Biology Letters | 2012

Autophagy favors Brucella melitensis survival in infected macrophages

Fei Guo; Hui Zhang; Chuangfu Chen; Shengwei Hu; Yuanzhi Wang; Jun Qiao; Yan Ren; Ke Zhang; Wang Yz; Guoqing Du

This study investigated the role of autophagy in the survival of the invasive bacterium Brucella melitensis strain 16M in murine macrophages. Here, Brucella melitensis 16M was found to trigger autophagosome formation, enhance autophagy flux and increase the expression level of the autophagy marker protein LC3-II. When autophagy was pharmacologically inhibited by 3-methyladenine (3-MA), Brucella replication efficiency was significantly decreased (p < 0.05). These results suggest that autophagy favors Brucella melitensis 16M survival in murine macrophages.


BioMed Research International | 2010

Enhanced Muscle Growth by Plasmid-Mediated Delivery of Myostatin Propeptide

Shengwei Hu; Chuangfu Chen; Jingliang Sheng; Yufang Sun; Xudong Cao; Jun Qiao

Myostatin is a member of the transforming growth factor beta (TGF-β) superfamily that functions as a negative regulator of skeletal muscle development and growth. Myostatin blockade therefore offers a strategy for promoting muscle growth in livestock production without resorting to genetic manipulation. In this report, we examined the effect of myostatin inhibition by plasmid-mediated delivery of a mutant myostatin propeptide (MProD76A), a natural inhibitor of myostatin, on the growth performance of mice. A significant increase in skeletal muscle mass was observed after a single intramuscular injection of naked plasmid DNA encoding MProD76A into mice. Enhanced muscle growth occurred because of myofiber hypertrophy, but no cardiac muscle hypertrophy and organomegaly was observed in the mice after myostatin inhibition by plasmid-mediated MProD76A delivery. These results demonstrate a promising approach to enhancing muscle growth that warrants further investigation in domestic animals.


PLOS ONE | 2012

Characterization of Periplasmic Protein BP26 Epitopes of Brucella melitensis Reacting with Murine Monoclonal and Sheep Antibodies

Jinlang Qiu; Wenjing Wang; Jingbo Wu; Hui Zhang; Yuanzhi Wang; Jun Qiao; Chuangfu Chen; Goege F. Gao; Jean-Pierre Allain; Chengyao Li

More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.


Vaccine | 2014

Evaluation of humoral and cellular immune responses to BP26 and OMP31 epitopes in the attenuated Brucella melitensis vaccinated sheep.

Wenjing Wang; Jingbo Wu; Jun Qiao; Yunceng Weng; Hui Zhang; Qingyu Liao; Jinlang Qiu; Chuangfu Chen; Jean-Pierre Allain; Chengyao Li

In recent years, the number of cases of human brucellosis has been increasing by approximately 10% per year in China. Most cases were caused by Brucella melitensis through contacts with infected sheep, goats or their products. An attenuated B. melitensis vaccine M5-90 is currently used to vaccinate both animals in China. This vaccine has not been investigated for critical parameters such as immune response and its association with protective efficacy. In this study, humoral and cellular immune response to the periplasmic protein BP26 and the outer membrane protein OMP31 were evaluated in M5-90 vaccinated Chinese merino and Kazak sheep. Antibodies to BP26 or OMP31 were detected at low levels, and specific IFN-γ response was quantified. Strongly reactive peptides derived from BP26 and OMP31 identified five T-cell epitopes (BP26-6, -8, -11, -12 and OMP31-23) common to both sheep species, five species-specific epitopes (BP26-10, -18, -21 and -22 and OMP31-12) and four animal-specific epitopes (BP26-15, -23, OMP31-6 and -21), which stimulated specific IFN-γ response in vaccinated sheep. Among those T-cell epitopes, reactivity to BP26-18 and -21 epitopes was significantly associated with MHC-I B allele (P=0.024). However, a specific T-cell response induced by the M5-90 vaccine was relatively week and did not sustain long enough, which might be suppressed by rapid activation of T-regulatory (Treg) cells following vaccination. These findings provide an insight in designing a safer and more effective vaccine for use in animals and in humans.


Journal of Microbiology | 2014

Bovine viral diarrhea virus infection induces autophagy in MDBK cells.

Qiang Fu; Huijun Shi; Yan Ren; Fei Guo; Wei Ni; Jun Qiao; Pengyan Wang; Hui Zhang; Chuangfu Chen

Bovine viral diarrhea virus (BVDV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Pestivirus (Flaviviridae). The signaling pathways and levels of signaling molecules are altered in Madin-Darby Bovine Kidney (MDBK) cells infected with BVDV. Autophagy is a conservative biological degradation pathway that mainly eliminates and degrades damaged or superfluous organelles and macromolecular complexes for intracellular recycling in eukaryotic cells. Autophagy can also be induced as an effective response to maintain cellular homeostasis in response to different stresses, such as nutrient or growth factor deprivation, hypoxia, reactive oxygen species exposure and pathogen infection. However, the effects of BVDV infection on autophagy inMDBK cells remain unclear. Therefore, we performed an analysis of autophagic activity after BVDV NADL infection using real-time PCR, electron microscopy, laser confocal microscopy, and Western blotting analysis. The results demonstrated that BVDV NADL infection increased autophagic activity and significantly elevated the expression levels of the autophagy-related genes Beclin1 and ATG14 inMDBK cells. However, the knockdown of Beclin1 and ATG14 by RNA interference (RNAi) did not affect BVDV NADL infection-related autophagic activity. These findings provided a novel perspective to elaborate the effects of viral infection on the host cells.


eLife | 2015

Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection

Shengwei Hu; Jun Qiao; Qiang Fu; Chuangfu Chen; Wei Ni; Sai Wujiafu; Shiwei Ma; Hui Zhang; Jingliang Sheng; Pengyan Wang; Dawei Wang; Jiong Huang; Lijuan Cao; Hongsheng Ouyang

Foot-and-mouth disease virus (FMDV) is an economically devastating viral disease leading to a substantial loss to the swine industry worldwide. A novel alternative strategy is to develop pigs that are genetically resistant to infection. Here, we produce transgenic (TG) pigs that constitutively expressed FMDV-specific short interfering RNA (siRNA) derived from small hairpin RNA (shRNA). In vitro challenge of TG fibroblasts showed the shRNA suppressed viral growth. TG and non-TG pigs were challenged by intramuscular injection with 100 LD50 of FMDV. High fever, severe clinical signs of foot-and-mouth disease and typical histopathological changes were observed in all of the non-TG pigs but in none of the high-siRNA pigs. Our results show that TG shRNA can provide a viable tool for producing animals with enhanced resistance to FMDV. DOI: http://dx.doi.org/10.7554/eLife.06951.001


Journal of Basic Microbiology | 2014

Autophagy during early stages contributes to bovine viral diarrhea virus replication in MDBK cells

Qiang Fu; Huijun Shi; Hui Zhang; Yan Ren; Fei Guo; Jun Qiao; Bin Jia; Pengyan Wang; Chuangfu Chen

Autophagy (or autophagocytosis) is an essential and precise control process by which cells degrade unnecessary or dysfunctional cellular components or organelles in the cytoplasm in response to nutrient depletion, exogenous pathogens, or other stimuli. This process results in the removal of damaged or surplus organelles and macromolecular complexes via a lysosome‐dependent mechanism. Bovine viral diarrhea virus (BVDV) is a ssRNA virus of the Flaviviridae family (genus Pestivirus). BVDV infection results in major economic losses due to poor reproductive performance and poor calf performance in cattle herds. In our previous studies, we have shown that BVDV NADL infection significantly increases autophagy in MDBK cells. To further define the interactions between autophagy and BVDV infection, we investigated the effects of autophagy on the replication of BVDV NADL. The findings showed that autophagy was inhibited by treatment with 3‐methyladenine (3‐MA) or wortmannin and that the knockdown of LC3 and Beclin1 using lentivirus‐mediated RNA interference (RNAi) suppressed BVDV NADL replication. In contrast, the findings showed the replication of BVDV NADL was significantly increased by treatment with the autophagy inducer rapamycin within 18 h post‐infection (pi). However, the mRNA levels of BVDV NADL 5′UTRs showed a downward trend after 18 h pi, and this effect was reversed by chloroquine treatment. Therefore, we inferred that infection with BVDV NADL increases autophagy, which in turn favors BVDV NADL replication at early stages.


Bioscience, Biotechnology, and Biochemistry | 2012

ΦC31 integrase mediates efficient site-specific integration in sheep fibroblasts.

Wei Ni; Shengwei Hu; Jun Qiao; Yuanzhi Wang; Huijun Shi; Wang Yz; Zhirui He; Guozhong Li; Chuangfu Chen

ΦC31 integrase, a site-specific recombinase, can effectively mediate the integration of foreign genes bearing an attB sequence into pseudo attP sites of genomes in human, mouse, and Drosophila cells. In this study, we measured ΦC31 integrase-mediated homologous recombination between attB and pseudo attP sites in sheep cells. The integration efficiency of the EGFP expression cassette with the attB sequence increased at least 2-fold in sheep fibroblasts. Three pseudo-attP sites were identified in the sheep genome, located in the intergenic regions on chromosomes 4, 13, and 7 respectively. Moreover, the transgene that was integrated at the three pseudo attP sites exhibited high levels of expression. Our study indicates that the ΦC31 integrase system provides an efficient integration tool for genetic engineering of the sheep genome.


Animal Biotechnology | 2015

Both foot-and-mouth disease virus and bovine viral diarrhea virus replication are inhibited by Mx1 protein originated from porcine.

Huijun Shi; Qiang Fu; Yan Ren; Dawei Wang; Jun Qiao; Pengyan Wang; Hui Zhang; Chuangfu Chen

Mx1 protein is I type interferons (IFNs)-induced 76-kDa guanosine triphosphatases (GTPases) that belong to the dynamin superfamily of large GTPases. Mx1 proteins have attracted attention because some display antiviral activity against pathogenic RNA and DNA viruses. Meanwhile, Mx1 gene generally exists in organisms or cells of mammalian, fish and chicken. Blocking a wide range of RNA virus replication by inhibiting nuclear viral mRNA synthesis is a unique property of Mx1 protein. In order to investigate a novel prevention measure against foot-and-mouth disease virus (FMDV) and bovine viral diarrhea virus (BVDV), which frequently break out in Xinjiang Uygur Autonomous Region of China, we investigated the effects of porcine Mx1 protein on FMDV and BVDV replication by measuring viral reverse transcriptase activity at various time intervals. In our study, Mx1 protein was overexpressed in BHK-21 and MDBK cells mediated by lentivirus prior to infect with FMDV and BVDV. FMDV and BVDV replication levels were monitored by quantitative real-Time PCR. The results showed porcine Mx1 overexpression significantly inhibited both FMDV and BVDV replication within 12 and 36 hours post-infection (pi). The finding may provide a new therapeutic approach for preventing from FDMV and BVDV infection.

Collaboration


Dive into the Jun Qiao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge