Yuanzhi Wang
Shihezi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuanzhi Wang.
Cellular & Molecular Biology Letters | 2012
Fei Guo; Hui Zhang; Chuangfu Chen; Shengwei Hu; Yuanzhi Wang; Jun Qiao; Yan Ren; Ke Zhang; Wang Yz; Guoqing Du
This study investigated the role of autophagy in the survival of the invasive bacterium Brucella melitensis strain 16M in murine macrophages. Here, Brucella melitensis 16M was found to trigger autophagosome formation, enhance autophagy flux and increase the expression level of the autophagy marker protein LC3-II. When autophagy was pharmacologically inhibited by 3-methyladenine (3-MA), Brucella replication efficiency was significantly decreased (p < 0.05). These results suggest that autophagy favors Brucella melitensis 16M survival in murine macrophages.
PLOS ONE | 2012
Jinlang Qiu; Wenjing Wang; Jingbo Wu; Hui Zhang; Yuanzhi Wang; Jun Qiao; Chuangfu Chen; Goege F. Gao; Jean-Pierre Allain; Chengyao Li
More than 35,000 new cases of human brucellosis were reported in 2010 by the Chinese Center for Disease Control and Prevention. An attenuated B. melitensis vaccine M5-90 is currently used for vaccination of sheep and goats in China. In the study, a periplasmic protein BP26 from M5-90 was characterized for its epitope reactivity with mouse monoclonal and sheep antibodies. A total of 29 monoclonal antibodies (mAbs) against recombinant BP26 (rBP26) were produced, which were tested for reactivity with a panel of BP26 peptides, three truncated rBP26 and native BP26 containing membrane protein extracts (NMP) of B. melitensis M5-90 in ELISA and Western-Blot. The linear, semi-conformational and conformational epitopes from native BP26 were identified. Two linear epitopes recognized by mAbs were revealed by 28 of 16mer overlapping peptides, which were accurately mapped as the core motif of amino acid residues 93DRDLQTGGI101 (position 93 to 101) or residues 104QPIYVYPD111, respectively. The reactivity of linear epitope peptides, rBP26 and NMP was tested with 137 sheep sera by ELISAs, of which the two linear epitopes had 65–70% reactivity and NMP 90% consistent with the results of a combination of two standard serological tests. The results were helpful for evaluating the reactivity of BP26 antigen in M5-90.
Microbiology and Immunology | 2013
Junbo Zhang; Fei Guo; Chuangfu Chen; Zhiqiang Li; Hui Zhang; Yuanzhi Wang; Ke Zhang; Guoqing Du; Yuefeng li; Jiangde Wang; Tong Jian; Zhen Wang
Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. Although effective, the current Brucella vaccines (Rev.1 and M5‐90) have several drawbacks. The first involves residual virulence for animals and humans and the second is the inability to differentiate natural infection from that caused by vaccination. Therefore, Brucella melitensis 16M hfq mutant (16MΔhfq) was constructed to overcome these drawbacks. Similarly to Rev.1 and M5‐90, 16MΔhfq reduces survival in macrophages and mice and induces strong protective immunity in BALB/c mice. Moreover, these vaccines elicit anti‐Brucella‐specific IgG1 and IgG2a subtype responses and induce secretion of gamma interferon and interleukin‐4. The Hfq antigen also allows serological differentiation between infected and vaccinated animals. These results show that 16MΔhfq is an ideal live attenuated vaccine candidate against virulent Brucella melitensis 16M infection. It will be further evaluated in sheep.
BMC Research Notes | 2012
Juan Zhang; Ligu Mi; Yuanzhi Wang; Peizhi Liu; Haiyan Liang; Yi Huang; Bing Lv; Li Yuan
BackgroundTuberculosis (TB) remains a major global health problem. To investigate the genotypes of Mycobacterium tuberculosis (MTB) and the distribution of Beijing family strains, molecular epidemiology technologies have been used widely.MethodsFrom June 2010 to June 2011, 55 M. tuberculosis isolates from patients with pulmonary TB were studied by Beijing family-specific PCR (detection of the deletion of region of difference 105 [RD105]), and mycobacterial interspersed repetitive units variable number tandem repeat (MIRU-VNTR) analysis. Twenty-four MIRU-VNTR loci defined the genotypes and clustering characteristics of the local strains. All strains were subjected to a drug susceptibility test (DST) by the proportion method on Lowenstein-Jensen (LJ) culture media.ResultsFifty-five clinical isolates of MTB were collected. Beijing family strains represented 85.5% of the isolates studied. Using 24 loci MIRU-VNTR typing categorized the strains into eight gene groups, 46 genotypes, and seven clusters. 83.6% (46/55) of the isolates belonged to the largest gene group. Thirty-six isolates (65.5%) were susceptible, nineteen (34.5%) were resistant to at least one drug, seven (12.8%) were Multidrug-Resistant Tuberculosis (MDR TB), and two (3.6%) were extremely drug-resistant tuberculosis (XDR-TB).ConclusionThe results showed there were obvious polymorphisms of VNTRs of MTB clinical strains. Beijing family strains of MTB were predominant in the Shihezi region of Xinjiang province. There was no correlation between the drug-resistance and Beijing family strains of MTB. It is necessary to strengthen the monitoring, treatment, and management of drug-resistance TB in Shihezi region, Xinjiang.
Parasites & Vectors | 2015
Yuanzhi Wang; Lu-Meng Mu; Ke Zhang; Mei-Hua Yang; Lin Zhang; Jing-Yun Du; Zhi-Qiang Liu; Yong-Xiang Li; Wei-Hua Lu; Chuangfu Chen; Yan Wang; Rong-Gui Chen; Jun Xu; Li Yuan; W. F. Zhang; Wei-Ze Zuo; Renfu Shao
BackgroundBorreliosis is highly prevalent in Xinjiang Uygur Autonomous Region, China. However, little is known about the presence of Borrelia pathogens in tick species in this region, in addition Borrelia pathogens have not been isolated from domestic animals.MethodsWe collected adult ticks from domestic animals at 19 sampling sites in 14 counties in northern Xinjiang from 2012 to 2014. Ticks were identified to species by morphology and were molecularly analysed by sequences of mitochondrial 16S rDNA gene; 4–8 ticks of each species at every sampling site were sequenced. 112 live adult ticks were selected for each species in every county, and were used to culture Borrelia pathogens; the genotypes were then determined by sequences of the 5S-23S rRNA intergenic spacer and the outer surface protein A (ospA) gene.ResultsA total of 5257 adult ticks, belonging to four genera and seven species, were collected. Compared with three decades ago, the abundance of the five common tick species during the peak ixodid tick season has changed. Certain tick species, such as Rhipicephalus turanicus (Rh. turanicus), was found at Jimusaer, Yining, Fukang, and Chabuchaer Counties for the first time. Additionally, the sequence analyses showed that the Hyalomma asiaticum (Hy. asiaticum), Haemaphysalis punctata (Ha. punctata), and Dermacentor marginatus (D. marginatus) that were collected from different sampling sites (≥3 sites) shared identical 16S rDNA sequences respectively. For the tick species that were collected from the same county, such as Hy. asiaticum from Shihezi County and Rh. turanicus from Yining County, their 16S rDNA sequences showed genetic diversity. In addition, sixteen Borrelia isolates were found in Hy. asiaticum, Ha. punctata, D. marginatus and Rh. turanicus, which infested cattle, sheep, horse and camel in Yining, Chabuchaer, Shihezi and Shawan Counties. All of the isolates were genetically identified as B. Burgdorferi sensu stricto.ConclusionsWarmer and wetter climate may have contributed to the altered distribution and abundance of the five most common ticks in northern Xinjiang. The genetic analyses showed that certain tick species, such as Hy. asiaticum or Rh. turanicus, exhibit genetic commonness or diversity. Additionally, this study is the first to isolate B. burgdorferi sensu stricto in Hy. asiaticum asiaticum, H. punctata, D. nuttalli and D. marginatus ticks from domestic animals. These ticks may transmit borreliosis among livestock.
Parasites & Vectors | 2015
Qingqing Wei; Li-Ping Guo; An-Dong Wang; Lu-Meng Mu; Ke Zhang; Chuangfu Chen; W. F. Zhang; Yuanzhi Wang
BackgroundRickettsia spp. belonging to the spotted fever group (SFG) cause infections in humans, domestic animals and wildlife. At least five SFG rickettsial species have been reported in China, but the occurrence of Rickettsia aeschlimannii and R. massiliae in ticks has not been characterized to date.FindingsA total of 114 adult ticks were collected from sheep in Yining County, Xinjiang Uygur Autonomous Region, in northwest China. The ticks were identified from morphological and molecular characteristics. All samples were examined by polymerase chain reaction (PCR), and six genetic markers were used to determine the Rickettsia spp. in the ticks. The ticks collected were identified as Rhipicephalus turanicus. Three different lineages of Rh. turanicus from Yining County were discovered on phylogenetic analysis of 16S rDNA and cox1. Twenty-one of the 114 samples (18.42%) were positive for rickettsial agents. Phylogenetic analysis based on six genetic sequences showed that three rickettsial species were present, namely: R. aeschlimannii (19.05%, 4/21), R. massiliae (19.05%, 4/21) and R. sibirica variant (61.90%, 13/21), which is clustered in the clade of R. sibirica subsp. sibirica.ConclusionsThis is the first description of R. aeschlimannii and R. massiliae in China. R. massiliae, R. aeschlimannii and R. sibirica variant co-circulate in the region of the China-Kazakhstan border, in northwest China. Rickettsial agents in ticks of the genus Rhipicephalus from migrant birds, transported livestock, wildlife and human beings should be investigated further in the region of the China–Central Asian border.
Parasites & Vectors | 2016
Dan Liu; Yuanzhi Wang; Huan Zhang; Zhi-Qiang Liu; Hazi Wureli; Shi-Wei Wang; Chang-Chun Tu; Chuangfu Chen
BackgroundMelophagus ovinus (Diptera: Hippoboscidae), a hematophagous ectoparasite, is mainly found in Europe, Northwestern Africa, and Asia. This wingless fly infests sheep, rabbits, and red foxes, and causes inflammation, wool loss and skin damage. Furthermore, this parasite has been shown to transmit diseases, and plays a role as a vector. Herein, we investigated the presence of various Rickettsia species in M. ovinus.MethodsIn this study, a total of 95 sheep keds were collected in Kuqa County and Alaer City southern region of Xinjiang Uygur Autonomous Region, northwestern China. First, collected sheep keds were identified on the species level using morphological keys and molecular methods based on a fragment of the 18S ribosomal DNA gene (18S rDNA). Thereafter, to assess the presence of rickettsial DNA in sheep keds, the DNA of individual samples was screened by PCR based on six Rickettsia-specific gene fragments originating from six genes: the 17-kilodalton antigen gene (17-kDa), 16S rRNA gene (rrs), surface cell antigen 4 gene (sca4), citrate synthase gene (gltA), and outer membrane protein A and B genes (ompA and ompB). The amplified products were confirmed by sequencing and BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome).ResultsAccording to its morphology and results of molecular analysis, the species was identified as Melophagus ovinus, with 100% identity to M. ovinus from St. Kilda, Australia (FN666411). DNA of Rickettsia spp. were found in 12 M. ovinus samples (12.63%, 12/95). Rickettsia raoultii and R. slovaca were confirmed based on phylogenetic analysis, although the genetic markers of these two rickettsial agents amplified in this study showed molecular diversity.ConclusionsThis is the first report of R. raoultii and R. slovaca DNA in M. ovinus. Rickettsia slovaca was found for the first time around the Taklimakan Desert located in China. This finding extends the geographical range of spotted fever group rickettsiae.
Bioscience, Biotechnology, and Biochemistry | 2012
Wei Ni; Shengwei Hu; Jun Qiao; Yuanzhi Wang; Huijun Shi; Wang Yz; Zhirui He; Guozhong Li; Chuangfu Chen
ΦC31 integrase, a site-specific recombinase, can effectively mediate the integration of foreign genes bearing an attB sequence into pseudo attP sites of genomes in human, mouse, and Drosophila cells. In this study, we measured ΦC31 integrase-mediated homologous recombination between attB and pseudo attP sites in sheep cells. The integration efficiency of the EGFP expression cassette with the attB sequence increased at least 2-fold in sheep fibroblasts. Three pseudo-attP sites were identified in the sheep genome, located in the intergenic regions on chromosomes 4, 13, and 7 respectively. Moreover, the transgene that was integrated at the three pseudo attP sites exhibited high levels of expression. Our study indicates that the ΦC31 integrase system provides an efficient integration tool for genetic engineering of the sheep genome.
Genes | 2016
Yuanzhi Wang; Zhen Wang; Xin Chen; Hui Zhang; Fei Guo; Ke Zhang; Hanping Feng; Wenyi Gu; Changxin Wu; Lei Ma; Tiansen Li; Chuangfu Chen; Shan Gao
Brucella species are the most important zoonotic pathogens worldwide and cause considerable harm to humans and animals. In this study, we presented the complete genome of B. suis 019 isolated from sheep (ovine) with epididymitis. B. suis 019 has a rough phenotype and can infect sheep, rhesus monkeys and possibly humans. The comparative genome analysis demonstrated that B. suis 019 is closest to the vaccine strain B. suis bv. 1 str. S2. Further analysis associated the rsh gene to the pathogenicity of B. suis 019, and the WbkA gene to the rough phenotype of B. suis 019. The 019 complete genome data was deposited in the GenBank database with ID PRJNA308608.
PLOS ONE | 2016
Lina Wang; Pengyan Wang; Yan Ren; Jing-Yun Du; Jianjun Jiang; Xuesong Jia; Chuangfu Chen; Yuanzhi Wang
Multiple human papillomavirus (HPV) genotypes often coexist within the cervical epithelia and are frequently detected together in various grades of the cervical neoplasia. To date, only a few reports exist on multiple HPV infections of HPV in Xinjiang Uygur Autonomous Region (XUAR). In the present study, we investigated the prevalence of High-Risk HPV (HR-HPV) genotypes and multiple infections. Cervical cytology samples were collected from 428 women who presented cervical abnormalities. Genotyping of HPV was performed by polymerase chain reaction–sequencing based typing (PCR-SBT) using consensus primers and specific primers. Of them, 166 samples were positive for HPV according to PCR results using the consensus primers. These samples contained cervical abnormalities enriched with inflammation (n = 107), cervical intraepithelial neoplasia (CIN) I (n = 19), CINII-III (n = 9) and cervical cancer (n = 31). Of the 166 HPV positive samples as determined by PCR analysis, 151 were further typed by PCR-SBT using 19 pairs of genotype-specific primers. Using this method, 17 different HR-HPV genotypes were identified. The most frequently observed HPV genotypes were HPV16 (44.0%, 73/166), 53 (28.9%, 48/166), 52 (25.3%, 42/166), 58 (22.3%, 37/166) and 35 (17.5%, 29/166). The proportions of single and multiple infections in the HPV-positive specimens were 34.9% and 65.1%, respectively. Multiple HPV types were most prevalent in the inflammatory state (63.0%), followed by cervical cancer (24.1%), CINI (11.1%), and CINII-III (1.9%). The results of our data analyses suggested that i) multiple HPV infection is not necessarily correlated with the severity of cervical abnormalities; and ii) among the multiple HPV infections, double infections combined with HPV16 is the most common. In addition, L1 full-length sequences of the top five high-risk HPV genotypes were amplified and sequenced. According to the L1 sequence of the epidemic genotypes that were amplified, we found that these genotypes contained the sequence point mutation, and that some of these genotypes further showed amino acid modifications. These results provide a basis for the construction of a polyvalent vaccine that is suitable for use in the XUAR, even in economically challenged communities located in China.