Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun-Seok Bae is active.

Publication


Featured researches published by Jun-Seok Bae.


Langmuir | 2008

New Method for Atomistic Modeling of the Microstructure of Activated Carbons Using Hybrid Reverse Monte Carlo Simulation

Thanh X. Nguyen; Nathalie Cohaut; Jun-Seok Bae; Suresh K. Bhatia

We propose a new hybrid reverse Monte Carlo (HRMC) procedure for atomistic modeling of the microstructure of activated carbons whereby the guessed configuration for the HRMC construction simulation is generated using the characterization results (pore size and pore wall thickness distributions) obtained by the interpretation of argon adsorption at 87 K using our improved version of the slit-pore model, termed the finite wall thickness (FWT) model (Nguyen, T. X.; Bhatia, S. K. Langmuir 2004, 20, 3532) . This procedure overcomes limitations arising from the use of short-range potentials in the conventional HRMC method, which make the latter unsuitable for carbons such as activated carbon fibers that are anisotropic with medium-range ordering induced by their complex pore structure. The newly proposed approach is applied specifically for the atomistic construction of an activated carbon fiber ACF15, provided by Kynol Corporation (Nguyen, T. X.; Bhatia, S. K. Carbon 2005, 43, 775) . It is found that the PSD of the ACF15s constructed microstructure is in good agreement with that determined using argon adsorption at 87 K. Furthermore, we have also found that the use of the Lennard-Jones (LJ) carbon-fluid interaction well depth obtained from scaling the flat graphite surface-fluid interaction well depth taken from Steele (Steele, W. A. Surf. Sci. 1973, 36, 317) provides an excellent prediction of experimental adsorption data including the differential heat of adsorption of simple gases (Ar, N(2), CH(4), CO(2)) over a wide range of temperatures and pressures. This finding is in agreement with the enhancement of the LJ carbon-fluid well depth due to the curvature of the carbon surface, found by the use of ab initio calculations (Klauda, J. B.; Jiang, J.; Sandler, S. I. J. Phys. Chem. B 2004, 108, 9842) .


Langmuir | 2009

Characterization and adsorption modeling of silicon carbide-derived carbons.

Thanh X. Nguyen; Jun-Seok Bae; Suresh K. Bhatia

We present characterization results of silicon carbide-derived carbons (Si-CDCs) prepared from both nano- and micron-sized betaSiC particles by oxidation in pure chlorine atmosphere at various synthesis temperatures (600-1000 degrees C). Subsequently, the adsorption modeling study of simple gases (CH4 and CO2) in these Si-CDC samples for a wide range of pressures and temperatures using our Finite Wall Thickness model [Nguyen, T. X.; Bhatia, S. K. Langmuir 2004, 20, 3532] was also carried out. In general, characterization results showed that the core of Si-CDC particles contains predominantly amorphous material while minor graphitization was also observed on the surface of these particles for all the investigated synthesis temperatures (600-1000 degrees C). Furthermore, postsynthetic heat treatment at 1000 degrees C for 3 days, as well as particle size of precursor (betaSiC) were shown to have slight impact on the graphitization. In spite of the highly disordered nature of Si-CDC samples, the adsorption modeling results revealed that the Finite Wall Thickness model provides reasonably good prediction of experimental adsorption data of CO2 and CH4 in all the investigated Si-CDC samples at the temperatures of 273 K, 313 K, and 333 K for a wide range of pressure up to 200 bar. Furthermore, the impact of the difference in molecular size and geometry between analysis and probing gases on the prediction of the experimental adsorption isotherm in a disordered carbon using the slit-pore model is also found. Finally, the correlation between compressibility of the Si-CDC samples under high pressure adsorption and their synthesis temperature was deduced from the adsorption modeling.


Langmuir | 2009

On the Strength of the Hydrogen-Carbon Interaction as Deduced from Physisorption

Thanh X. Nguyen; Jun-Seok Bae; Yang Wang; Suresh K. Bhatia

We deduce a new value for the potential well depth for the C-H2 interaction on the basis of experimental validations of isotherms of H2 and D2 predicted using independently characterized microstructural parameters. We use two carbons, one an activated carbon fiber whose structure has been recently characterized by us (Nguyen, T. X.; cohaut, N.; Bae, J.-S.; Bhatia, S. K. Langmuir 2008, 24, 7912) using hybrid reverse Monte Carlo simulation (HRMC) and the other the commercial Takeda 3A carbon molecular sieve whose pore size distribution is determined here from the 273 K CO2 adsorption isotherm. The conventional grand canonical Monte Carlo simulation technique incorporating a semiclassical Feynman and Hibbs (FH) potential approximation (FHGCMC) as well as path integral Monte Carlo calculations is employed to determine theoretical adsorption isotherms. It is found that curvature enhances the well depth for the LJ C-H2 interaction by a factor of 1.134 over that for a flat graphite surface, consistent with our recent study (Nguyen, T. X.; cohaut, N.; Bae, J.-S.; Bhatia, S. K. Langmuir 2008, 24, 7912). A value of the C-C well depth of 37.26 K, used for estimating the C-H2 well depth in conjunction with the Berthelot rules, with the Steele C-C well depth used for interaction with heavier gases (Ar, CO2 and CH4), leads to excellent agreement with experimental isotherms in all cases.


Chemical Engineering Science | 2002

Study on diffusion and flow of benzene, n-hexane and CCl4 in activated carbon by a differential permeation method

Jun-Seok Bae; D.D. Do

In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure


Chemical Engineering Science | 2003

Surface diffusion of strongly adsorbing vapors in activated carbon by a differential permeation method

Jun-Seok Bae; D.D. Do

Conventional methods to determine surface diffusion of adsorbed molecules are proven to be inadequate for strongly adsorbing vapors on activated carbon. Knudsen diffusion permeability (B-k) for strongly adsorbing vapors cannot be directly estimated from that of inert gases such as helium. In this paper three models are considered to elucidate the mechanism of surface diffusion in activated carbon. The transport mechanism in all three models is a combination of Knudsen diffusion, viscous flow and surface diffusion. The collision reflection factor f (which is the fraction of molecules undergoing collision to the solid surface over reflection from the surface) of the Knudsen diffusivity is assumed to be a function of loading. It was found to be 1.79 in the limit of zero loading, and decreases as loading increases. The surface diffusion permeability increases sharply at very low pressures and then starts to decrease after it has reached a maximum (B(mum)s) at a threshold pressure. The initial rapid increase in the total permeability is mainly attributed to surface diffusion. Interestingly the B(mum)s for all adsorbates appear at the same volumetric adsorbed phase concentration, suggesting that the volume of adsorbed molecules may play an important role in the surface diffusion mechanism in activated carbon


Journal of Non-Equilibrium Thermodynamics | 2005

Effects of adsorbed phase on diffusion of subcritical hydrocarbons in activated carbon at low pressures

Jun-Seok Bae; D.D. Do

Abstract Diffusions of free and adsorbed molecules of subcritical hydrocarbons in activated carbon were investigated to study the influence of adsorbed molecules on both diffusion processes at low pressures. A collision reflection factor, defined as the fraction of molecules undergoing collision to the solid surface over reflection from the surface, is incorporated into Knudsen diffusivity and surface diffusivity in meso/macropores. Since the porous structure of activated carbon is bimodal in nature, the diffusion of adsorbed molecules is contributed by that of weakly adsorbed molecules on the meso/macropore surfaces and that of strongly adsorbed molecules in the small confinement of micropores. The mobility of adsorbed molecules on the meso/macropore surface is characterized by the surface diffusivity D μ 2, while that in the micropore is characterized by D μ 1. In our study with subcritical hydrocarbons, we have found that the former increases almost linearly with pressure, while the latter exhibits a sharp increase at a very low-pressure region and then decreases beyond a critical pressure. This critical pressure is identified as a pressure at which the micropores are saturated.


Korean Journal of Chemical Engineering | 2003

A Unique Behavior of Sub-critical Hydrocarbon Permeability in Activated Carbon at Low Pressures

Jun-Seok Bae; D.D. Do

In our study on sub-critical hydrocarbon permeation in activated carbon, a minimum in the total permeability (BT) at low pressure has been observed for only long-chain hydrocarbons such asn-hexane andn-heptane. Such an observation suggests that the minimum appearance depends on the properties of permeating vapors as well as the porous medium. In this paper a permeation model is presented to explain the minimum behavior with the allowance of the collision-reflection factor in the Knudsen diffusivity to be a function of surface loading. Surface diffusion was found to be very significant compared to other transport mechanisms such as Knudsen diffusion and gaseous viscous flow at low pressures. Since the gaseous viscous flow contributes negligibly to the BT at low pressures, the minimum appearance in the BT is mainly attributed to the interplay between Knudsen diffusion and surface diffusion. Also, the molecular structure of adsorbates plays an important role in the minimum appearance.


8th International Symposium on the Characterisation of Porous Solids: COPS VIII | 2009

Characterization of microporous carbons: From mathematical modeling to atomistic construction

Thanh X. Nguyen; Nathalie Cohaut; Jun-Seok Bae; Suresh K. Bhatia

Characterisation of Porous Solids VIII is concerned with fundamental and applied research on the characterisation of the structure of porous materials and the relationship between structure and material performance. The scope includes experimental characterisation methods such as X-Ray diffraction, NMR, adsorption, mercury intrusion, and calorimetry; theoretical and simulation methods used to interpret experimental data, such as molecular simulation, classical and statistical mechanical theory and pore network modelling; and applied research on the impact of measured material properties on performance in applications. This book will appeal to both academics and commercial researchers.


Third Pacific Basin Conference on Adsorption Science and Technology | 2003

On the peculiarity of the minimum of n-hexane permeability in activated carbon

Jun-Seok Bae; D.D. Do

For the tortuous and irregular capillaries of porous media, it has been reported theoretically and experimentally that a minimum in the permeability of adsorbates at low pressures is not expected to appear. In our study of n-hexane in activated carbon, however, a minimum was consistently observed for n-hexane at a relative pressure of about 0.03, while benzene and CCl4 show a monotonically increasing behavior of the permeability versus pressure. Such an observation suggests that the existence of the minimum depends on the properties of permeating vapors as well as the porous medium. In this paper a permeation model is presented to describe the minimum with an introduction of a collision-reflection factor. Surface diffusion permeability is found to increase sharply at very low pressure, then decrease modestly with an increase in pressure. As a result, the appearance of a minimum in permeability was found to be controlled by the interplay between Knudsen diffusion and surface diffusion for each adsorbate at low pressures.


Energy & Fuels | 2006

High-pressure adsorption of methane and carbon dioxide on coal

Jun-Seok Bae; Suresh K. Bhatia

Collaboration


Dive into the Jun-Seok Bae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.D. Do

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

P. Massarotto

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Victor Rudolph

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. D. Golding

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge