Junchao Tong
Centre for Addiction and Mental Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Junchao Tong.
The Journal of Neuroscience | 2012
Isabelle Boileau; Doris Payer; Sylvain Houle; Arian Behzadi; Pablo Rusjan; Junchao Tong; Diana G. Wilkins; Peter Selby; Tony P. George; Martin Zack; Yoshiaki Furukawa; Tina McCluskey; Alan A. Wilson; Stephen J. Kish
Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin ([11C]-(+)-PHNO). Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning after [11C]-(+)-PHNO. Compared with control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN; +46%; p < 0.02) and in the globus pallidus (+9%; p = 0.06) and ventral pallidum (+11%; p = 0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (approximately −4%, NS; −12% in heavy users, p = 0.01) and related to drug-use severity. The [11C]-(+)-PHNO binding ratio in D3-rich SN versus D2-rich dorsal striatum was 55% higher in MA users (p = 0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported “drug wanting.” We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users, although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.
The Journal of Neuroscience | 2008
Isabelle Boileau; Pablo Rusjan; Sylvain Houle; Diana G. Wilkins; Junchao Tong; Peter Selby; Mark Guttman; Jean A. Saint-Cyr; Alan A. Wilson; Stephen J. Kish
Animal data indicate that methamphetamine can damage striatal dopamine terminals. Efforts to document dopamine neuron damage in living brain of methamphetamine users have focused on the binding of [11C]dihydrotetrabenazine (DTBZ), a vesicular monoamine transporter (VMAT2) positron emission tomography (PET) radioligand, as a stable dopamine neuron biomarker. Previous PET data report a slight decrease in striatal [11C]DTBZ binding in human methamphetamine users after prolonged (mean, 3 years) abstinence, suggesting that the reduction would likely be substantial in early abstinence. We measured striatal VMAT2 binding in 16 recently withdrawn (mean, 19 d; range, 1–90 d) methamphetamine users and in 14 healthy matched-control subjects during a PET scan with (+)[11C]DTBZ. Unexpectedly, striatal (+)[11C]DTBZ binding was increased in methamphetamine users relative to controls (+22%, caudate; +12%, putamen; +11%, ventral striatum). Increased (+)[11C]DTBZ binding in caudate was most marked in methamphetamine users abstinent for 1–3 d (+41%), relative to the 7–21 d (+15%) and >21 d (+9%) groups. Above-normal VMAT2 binding in some drug users suggests that any toxic effect of methamphetamine on dopamine neurons might be masked by an increased (+)[11C]DTBZ binding and that VMAT2 radioligand binding might not be, as is generally assumed, a “stable” index of dopamine neuron integrity in vivo. One potential explanation for increased (+)[11C]DTBZ binding is that VMAT2 binding is sensitive to changes in vesicular dopamine storage levels, presumably low in drug users. If correct, (+)[11C]DTBZ might be a useful imaging probe to correlate changes in brain dopamine stores and behavior in users of methamphetamine.
Neuropsychopharmacology | 2014
Doris Payer; Arian Behzadi; Stephen J. Kish; Sylvain Houle; Alan A. Wilson; Pablo Rusjan; Junchao Tong; Peter Selby; Tony P. George; Tina McCluskey; Isabelle Boileau
The dopamine system is a primary treatment target for cocaine dependence (CD), but research on dopaminergic abnormalities (eg, D2 receptor system deficiencies) has so far failed to translate into effective treatment strategies. The D3 receptor system has recently attracted considerable clinical interest, and D3 antagonism is now under investigation as a novel avenue for addiction treatment. The objective here was to evaluate the status and behavioral relevance of the D3 receptor system in CD, using the positron emission tomography (PET) radiotracer [11C]-(+)-PHNO. Fifteen CD subjects (many actively using, but all abstinent 7–240 days on scan day) and fifteen matched healthy control (HC) subjects completed two PET scans: one with [11C]-(+)-PHNO to assess D3 receptor binding (BPND; calculated regionally using the simplified reference tissue model), and for comparison, a second scan with [11C]raclopride to assess D2/3 binding. CD subjects also completed a behavioral battery to characterize the addiction behavioral phenotype. CD subjects showed higher [11C]-(+)-PHNO BPND than HC in the substantia nigra, which correlated with behavioral impulsiveness and risky decision making. In contrast, [11C]raclopride BPND was lower across the striatum in CD, consistent with previous literature in ⩾2 week abstinence. The data suggest that in contrast to a D2 deficiency, CD individuals may have heightened D3 receptor levels, which could contribute to addiction-relevant traits. D3 upregulation is emerging as a biomarker in preclinical models of addiction, and human PET studies of this receptor system can help guide novel pharmacological strategies for treatment.
Psychopharmacology | 2009
Stephen J. Kish; Paul S. Fitzmaurice; Isabelle Boileau; Gregory A. Schmunk; Lee-Cyn Ang; Yoshiaki Furukawa; Li-Jan Chang; Dennis J. Wickham; Allan L. Sherwin; Junchao Tong
RationaleResearch on methamphetamine (MA) toxicity primarily focuses on the possibility that some of the behavioural problems in human MA users might be caused by damage to brain dopamine neurones. However, animal data also indicate that MA can damage brain serotonin neurones, and it has been suggested that cognitive problems and aggression in MA users might be explained by serotonergic damage. As information on the brain serotonin system in human MA users is fragmentary, our objective was to determine whether protein levels of serotonin transporter (SERT), a key marker of serotonin neurones, are decreased in brain of chronic MA users.MethodsSERT immunoreactivity was measured using an immunoblotting procedure in autopsied brain of 16 chronic MA users testing positive for the drug in blood and brain and matched controls.ResultsSERT levels were non-significantly decreased (−14% to −33%) in caudate, putamen and thalamus (normal in hippocampus), and, unlike the robust striatal dopamine reduction, there was marked overlap between control and MA user ranges. Concentrations of SERT were significantly decreased (−23% to −39%) in orbitofrontal and occipital cortices (normal in frontopolar and temporal cortices).ConclusionsOur data suggest that MA might modestly damage brain serotonin neurones and/or inhibit SERT protein expression, with cerebral cortex being more affected than sub-cortical regions. The SERT reduction in orbitofrontal cortex complements other data suggesting involvement of this area in MA-related behaviour. Decreased brain SERT could also be related to the clinical finding that treatment with a selective serotonin re-uptake inhibitor might increase relapse to MA.
Journal of Pharmacology and Experimental Therapeutics | 2006
Paul S. Fitzmaurice; Junchao Tong; Mehrdad Yazdanpanah; Peter Liu; Kathryn S. Kalasinsky; Stephen J. Kish
Animal studies suggest that the widely used psychostimulant drug methamphetamine (MA) can harm brain dopamine neurones, possibly by causing oxidative damage. However, evidence of oxidative damage in brain of human MA users is lacking. We tested the hypothesis that levels of two “gold standard” products generated from lipid peroxidation, 4-hydroxynonenal (one of the most reactive lipid peroxidation aldehyde products) and malondialdehyde, would be elevated in post mortem brain of 16 dopamine-deficient chronic MA users compared with those in 21 matched control subjects. Derivatized aldehyde concentrations were determined by gas chromatography-mass spectrometry. In the MA group, we found significantly increased levels of 4-hydroxynonenal and malondialdehyde in the dopamine-rich caudate nucleus (by 67 and 75%, respectively) and to a lesser extent in frontal cortex (48 and 36%, respectively) but not in the cerebellar cortex. Approximately half of the MA users had levels of 4-hydroxynonenal falling above the upper limit of the control range in caudate and frontal cortex. A subgroup of MA users with high brain drug levels had higher concentrations of the aldehydes. Our data suggest that MA exposure in human causes, as in experimental animals, above-normal formation of potentially toxic lipid peroxidation products in brain. This provides evidence for involvement of oxygen-based free radicals in the action of MA in both dopamine-rich (caudate) and -poor (cerebral cortex) areas of human brain.
Journal of Cerebral Blood Flow and Metabolism | 2013
Junchao Tong; Jeffrey H. Meyer; Yoshiaki Furukawa; Isabelle Boileau; Li-Jan Chang; Alan A. Wilson; Sylvain Houle; Stephen J. Kish
Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [11C]harmine, [11C]clorgyline, and [11C]befloxatone; MAO-B: [11C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n = 38) and developmental/aging changes (21 hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [11C]befloxatone (binding potential (BP), r = 0.61, P = 0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P < 0.01) for [11C]harmine (distribution volume, r = 0.86), [11C]clorgyline (λk3, r = 0.82), and [11C]deprenyl-D2 (λk3 or modified Patlak slope, r = 0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ~2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality.
Nuclear Medicine and Biology | 2011
Alan A. Wilson; Armando Garcia; Jun Parkes; Sylvain Houle; Junchao Tong; Neil Vasdev
INTRODUCTION Fatty acid amide hydrolase (FAAH) is the enzyme responsible for metabolising the endogenous cannabinoid, anandamide, and thus represents an important target for molecular imaging. To date, no radiotracer has been shown to be useful for imaging of FAAH using either positron emission tomography (PET) or single photon emission computed tomography (SPECT). We here determine the suitability of a novel carbon-11-labeled inhibitor of FAAH via ex vivo biodistribution studies in rat brain in conjunction with pharmacological challenges. METHODS A potent irreversible inhibitor of FAAH, URB694, radiolabeled with carbon-11 in the carbonyl position ([(11)C]CURB), was administered to male rats via tail-vein injection. Rats were sacrificed at various time points postinjection, and tissue samples were dissected, counted and weighed. Specific binding to FAAH was investigated by pretreatment of animals with URB694 or URB597. For metabolism and mechanism of binding studies, whole brains were excised post-radiotracer injection, homogenised and extracted exhaustively with 80% aq. acetonitrile to determine the time course and fraction of radioactivity that was irreversibly bound to brain parenchyma. RESULTS Upon intravenous injection into rats, [(11)C]CURB showed high brain uptake [standard uptake value (SUV) of 1.6-2.4 at 5 min] with little washout over time, which is characteristic of irreversible binding. Highest uptake of radioactivity was seen in the cortex, intermediate in the cerebellum and lowest in the hypothalamus, reflecting the reported distribution of FAAH. Brain uptake of radioactivity was decreased in a dose-dependent manner by pretreatment with increasing amounts of URB694, demonstrating that binding was saturable. Pretreatment with the well-characterised FAAH inhibitor, URB597, reduced binding in all brain regions by 70-80%. Homogenised brain extraction experiments demonstrated unequivocally that [(11)C]CURB was irreversibly bound to FAAH. CONCLUSIONS The title radiotracer demonstrates favourable properties such as good brain uptake, regional heterogeneity and specificity of binding based on ex vivo biodistribution studies in conscious rat brain. [(11)C]CURB represents a highly promising radiotracer for the imaging of FAAH using PET.
Synapse | 2008
Junchao Tong; Alan A. Wilson; Isabelle Boileau; Sylvain Houle; Stephen J. Kish
Binding of (+)‐[11C]DTBZ (dihydrotetrabenazine) to the striatal vesicular monoamine transporter (VMAT2) is widely considered to be a stable marker of dopamine neurone integrity. However, we now find that specific binding of a tracer dose of (+)‐[11C]DTBZ is modestly increased in rat striatum following dopamine depletion with α‐methyl‐p‐tyrosine (α‐MPT, +14%) or d‐amphetamine (d‐AMPH, 20 mg/kg, +12%) and decreased following dopamine elevation with γ‐hydroxybutyrate (GHB, −16%) or levodopa (−20%). We suggest that in vivo (+)‐[11C]DTBZ binding in imaging studies is subject to competition by vesicular dopamine and, in this respect, is not a “stable” dopamine biomarker as is generally assumed. Synapse 62:873–876, 2008.
Journal of Cerebral Blood Flow and Metabolism | 2013
Pablo Rusjan; Alan A. Wilson; Romina Mizrahi; Isabelle Boileau; Sofia Chavez; Nancy J. Lobaugh; Stephen J. Kish; Sylvain Houle; Junchao Tong
Endocannabinoid tone has recently been implicated in a number of prevalent neuropsychiatric conditions. [11C]CURB is the first available positron emission tomography (PET) radiotracer for imaging fatty acid amide hydrolase (FAAH), the enzyme which metabolizes the prominent endocannabinoid anandamide. Here, we sought to determine the most suitable kinetic modeling approach for quantifying [11C]CURB that binds selectively to FAAH. Six healthy volunteers were scanned with arterial blood sampling for 90 minutes. Kinetic parameters were estimated regionally using a one-tissue compartment model (TCM), a 2-TCM with and without irreversible trapping, and an irreversible 3-TCM. The 2-TCM with irreversible trapping provided the best identifiability of PET outcome measures among the approaches studied (coefficient of variation (COV) of the net influx constant Ki and the composite parameter λk3 (λ = K1/k2) <5%, and COV(k3) < 10%). Reducing scan time to 60 minutes did not compromise the identifiability of rate constants. Arterial spin labeling measures of regional cerebral blood flow were only slightly correlated with Ki, but not with k3 or λk3. Our data suggest that λk3 is sensitive to changes in FAAH activity, therefore, optimal for PET quantification of FAAH activities with [11C]CURB. Simulations showed that [11C]CURB binding in healthy subjects is far from a flow-limited uptake.
Neurobiology of Disease | 2015
Junchao Tong; Lee-Cyn Ang; Belinda Williams; Yoshiaki Furukawa; Paul S. Fitzmaurice; Mark Guttman; Isabelle Boileau; Oleh Hornykiewicz; Stephen J. Kish
Although gliosis is a normal response to brain injury, reports on the extent of astrogliosis in the degenerating substantia nigra in Parkinsons disease (PD) are conflicting. It has also been recently suggested that accumulation of nigral α-synuclein in this disorder might suppress astrocyte activation which in turn could exacerbate the degenerative process. This study examined brain protein levels (intact protein, fragments, and aggregates, if any) of astroglial markers and their relationship to α-synuclein in PD and in the positive control parkinson-plus conditions multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Autopsied brain homogenates of patients with PD (n=10), MSA (n=11), PSP (n=11) and matched controls (n=10) were examined for the astroglial markers glial fibrillary acidic protein (GFAP), vimentin, and heat shock protein-27 (Hsp27) by quantitative immunoblotting. As expected, both MSA (putamen>substantia nigra>caudate>frontal cortex) and PSP (substantia nigra>caudate>putamen, frontal cortex) showed widespread but regionally specific pattern of increased immunoreactivity of the markers, in particular for the partially proteolyzed fragments (all three) and aggregates (GFAP). In contrast, immunoreactivity of the three markers was largely normal in PD in brain regions examined with the exception of trends for variably increased levels of cleaved vimentin in substantia nigra and frontal cortex. In patients with PD, GFAP levels in the substantia nigra correlated inversely with α-synuclein accumulation whereas the opposite was true for MSA. Our biochemical findings of generally normal protein levels of astroglial markers in substantia nigra of PD, and negative correlation with α-synuclein concentration, are consistent with some recent neuropathology reports of mild astroglial response and with the speculation that astrogliosis might be suppressed in this disorder by excessive α-synuclein accumulation. Should astrogliosis protect, to some extent, the degenerating substantia nigra from damage, therapeutics aimed at normalization of astrocyte reaction in PD could be helpful.