Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pablo Rusjan is active.

Publication


Featured researches published by Pablo Rusjan.


Brain | 2009

Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study

T. D. L. Steeves; Janis Miyasaki; Mateusz Zurowski; Ae Lang; Giovanna Pellecchia; T. van Eimeren; Pablo Rusjan; Sylvain Houle; Antonio P. Strafella

Pathological gambling is an impulse control disorder reported in association with dopamine agonists used to treat Parkinsons disease. Although impulse control disorders are conceptualized as lying within the spectrum of addictions, little neurobiological evidence exists to support this belief. Functional imaging studies have consistently demonstrated abnormalities of dopaminergic function in patients with drug addictions, but to date no study has specifically evaluated dopaminergic function in Parkinsons disease patients with impulse control disorders. We describe results of a [(11)C] raclopride positron emission tomography (PET) study comparing dopaminergic function during gambling in Parkinsons disease patients, with and without pathological gambling, following dopamine agonists. Patients with pathological gambling demonstrated greater decreases in binding potential in the ventral striatum during gambling (13.9%) than control patients (8.1%), likely reflecting greater dopaminergic release. Ventral striatal bindings at baseline during control task were also lower in patients with pathological gambling. Although prior imaging studies suggest that abnormality in dopaminergic binding and dopamine release may be markers of vulnerability to addiction, this study presents the first evidence of these phenomena in pathological gambling. The emergence of pathological gambling in a number of Parkinsons disease patients may provide a model into the pathophysiology of this disorder.


JAMA Psychiatry | 2015

Role of Translocator Protein Density, a Marker of Neuroinflammation, in the Brain During Major Depressive Episodes

Elaine Setiawan; Alan A. Wilson; Romina Mizrahi; Pablo Rusjan; Laura Miler; Grazyna Rajkowska; Ivonne Suridjan; James L. Kennedy; P. Vivien Rekkas; Sylvain Houle; Jeffrey H. Meyer

IMPORTANCE The neuroinflammatory hypothesis of major depressive disorder is supported by several main findings. First, in humans and animals, activation of the immune system causes sickness behaviors that present during a major depressive episode (MDE), such as low mood, anhedonia, anorexia, and weight loss. Second, peripheral markers of inflammation are frequently reported in major depressive disorder. Third, neuroinflammatory illnesses are associated with high rates of MDEs. However, a fundamental limitation of the neuroinflammatory hypothesis is a paucity of evidence of brain inflammation during MDE. Translocator protein density measured by distribution volume (TSPO VT) is increased in activated microglia, an important aspect of neuroinflammation. OBJECTIVE To determine whether TSPO VT is elevated in the prefrontal cortex, anterior cingulate cortex (ACC), and insula in patients with MDE secondary to major depressive disorder. DESIGN, SETTING, AND PARTICIPANTS Case-control study in a tertiary care psychiatric hospital from May 1, 2010, through February 1, 2014. Twenty patients with MDE secondary to major depressive disorder and 20 healthy control participants underwent positron emission tomography with fluorine F 18-labeled N-(2-(2-fluoroethoxy)benzyl)-N-(4-phenoxypyridin-3-yl)acetamide ([18F]FEPPA). Patients with MDE were medication free for at least 6 weeks. All participants were otherwise healthy and nonsmokers. MAIN OUTCOMES AND MEASURES Values of TSPO VT in the prefrontal cortex, ACC, and insula. RESULTS In MDE, TSPO VT was significantly elevated in all brain regions examined (multivariate analysis of variance, F15,23 = 4.5 [P = .001]). The magnitude of TSPO VT elevation was 26% in the prefrontal cortex (mean [SD] TSPO VT, 12.5 [3.6] in patients with MDE and 10.0 [2.4] in controls), 32% in the ACC (mean [SD] TSPO VT, 12.3 [3.5] in patients with MDE and 9.3 [2.2] in controls), and 33% in the insula (mean [SD] TSPO VT, 12.9 [3.7] in patients with MDE and 9.7 [2.3] in controls). In MDE, greater TSPO VT in the ACC correlated with greater depression severity (r = 0.63 [P = .005]). CONCLUSIONS AND RELEVANCE This finding provides the most compelling evidence to date of brain inflammation, and more specifically microglial activation, in MDE. This finding is important for improving treatment because it implies that therapeutics that reduce microglial activation should be promising for MDE. The correlation between higher ACC TSPO VT and the severity of MDE is consistent with the concept that neuroinflammation in specific regions may contribute to sickness behaviors that overlap with the symptoms of MDE.


Biological Psychiatry | 2012

Increased Stress-Induced Dopamine Release in Psychosis

Romina Mizrahi; Jean Addington; Pablo Rusjan; Ivonne Suridjan; Alvina Ng; Isabelle Boileau; Jens C. Pruessner; Gary Remington; Sylvain Houle; Alan A. Wilson

BACKGROUND A pathologic response to common life stressors, in which a hyperresponsive dopaminergic system is thought to play a key role, is a potential etiologic factor in the triggering and relapse of psychosis. However, there is no direct evidence that brain dopaminergic response to stress is exaggerated in psychosis. METHODS Using the ability of endogenous dopamine (DA) to compete with [(11)C]-(+)-PHNO binding, as measured with positron emission tomography, we examined stress-induced DA release in response to a validated psychosocial stress task. We studied 12 clinical high-risk (CHR), 10 antipsychotic-naive subjects with schizophrenia (SCZ), and 12 matched healthy volunteers (HV). Stress-induced DA release was estimated as the percent change in binding potential between conditions (stress and control scan) in the striatal subdivisions: limbic striatum (LST), associative striatum (AST), and sensorimotor striatum (SMST). RESULTS We found a significant difference between groups in the AST (F = 8.13, df = 2,31, p = .001), and at the SMST (F = 3,64, df = 2,31, p = .03) but not in the LST (F = .43, df = 2,31, p = .40) with CHR and SCZ having larger [(11)C]-(+)-PHNO displacement in response to the stress. Bonferroni-corrected comparisons confirmed that HV displacement (-2.86%) in the AST was significantly different in CHR (6.97%) and SCZ (11.44%) (with no significant difference between CHR and SCZ). CONCLUSIONS This study reveals a sensitized dopaminergic response to stress in a psychiatric condition and may have important theoretical and clinical implications regarding efforts to abort or delay relapse and/or conversion to psychosis.


European Journal of Neurology | 2007

Brain serotonin transporter binding in non-depressed patients with Parkinson's disease

Mark Guttman; Isabelle Boileau; Jerry J. Warsh; Jean A. Saint-Cyr; N. Ginovart; Tina McCluskey; Sylvain Houle; Alan A. Wilson; E. Mundo; Pablo Rusjan; Jeffrey H. Meyer; Stephen J. Kish

Early post‐mortem data suggest that damage to brain serotonin neurones might play a role in some features (e.g., depression) of Parkinsons disease (PD). However, it is not known whether such damage is a typical characteristic of living patients with PD or whether the changes are regionally widespread. To address this question we measured, by positron emission tomography imaging, levels of the brain serotonin transporter (SERT), a marker for serotonin neurones, as inferred from binding of [11C]‐3‐amino‐4‐(2‐dimethylaminomethyl‐phenylsulfanyl)‐benzonitrile (DASB), a second generation SERT radioligand, in subcortical and cerebral cortical brain areas of clinically advanced non‐depressed (confirmed by structured psychiatric interview) patients with PD. SERT binding levels in PD were lower than those in controls in all examined brain areas, with the changes statistically significant in orbitofrontal cortex (−22%), caudate (−30%), putamen (−26%), and midbrain (−29%). However, only a slight non‐significant reduction (−7%) was observed in dorsolateral pre‐frontal cortex, an area implicated in major depression. Our imaging data suggests that a modest, regionally widespread loss of brain serotonergic innervation might be a common feature of advanced PD. Further investigation will be required to establish whether SERT binding is more or less decreased in those patients with PD who also have major depressive disorder.


JAMA Neurology | 2010

Serotonin 2A Receptors and Visual Hallucinations in Parkinson Disease

Bénédicte Ballanger; Thilo van Eimeren; Mateusz Zurowski; Pablo Rusjan; Sylvain Houle; Susan H. Fox

BACKGROUND Complex visual hallucinations (VHs) occur in several pathologic conditions; however, the neural mechanisms underlying these symptoms remain unclear. Although dopamine may have a role, indirect evidence indicates that serotonin may also contribute to the pathogenesis of complex VHs, probably via involvement of the serotonin 2 receptor. OBJECTIVE To examine for the first time in vivo changes in serotonin 2A receptor neurotransmission among patients having Parkinson disease (PD) with VHs. DESIGN Case-control study. SETTING Academic research. PATIENTS Seven patients having PD with VHs and 7 age-matched patients having PD without VHs were recruited. MAIN OUTCOME MEASURES We used the selective serotonin 2A receptor ligand setoperone F 18 during positron emission tomography among nondemented patients having PD with VHs. RESULTS Patients having PD with VHs demonstrate increased serotonin 2A receptor binding in the ventral visual pathway (including the bilateral inferooccipital gyrus, right fusiform gyrus, and inferotemporal cortex) as well as the bilateral dorsolateral prefrontal cortex, medial orbitofrontal cortex, and insula. CONCLUSIONS This pilot study provides the first in vivo evidence suggesting a role for serotonin 2A receptors in mediating VHs via the ventral visual pathway in PD. Treatment studies should be performed using selective serotonin 2A receptor antagonists, which have important implications for the clinical management of VHs and psychosis in PD.


Psychiatry Research-neuroimaging | 2006

An automated method for the extraction of regional data from PET images

Pablo Rusjan; David C. Mamo; Nathalie Ginovart; Douglas Hussey; Irina Vitcu; Fumihiko Yasuno; Suhara Tetsuya; Sylvain Houle; Shitij Kapur

Manual drawing of regions of interest (ROIs) on brain positron emission tomography (PET) images is labour intensive and subject to intra- and inter-individual variations. To standardize analysis and improve the reproducibility of PET measures, we have developed image analysis software for automated quantification of PET data. The method is based on the individualization of a set of standard ROIs using a magnetic resonance (MR) image co-registered with the PET image. To evaluate the performance of this automated method, the software-based quantification has been compared with conventional manual quantification of PET images obtained using three different PET radiotracers: [(11)C]-WAY 100635, [(11)C]-raclopride and [(11)C]-DASB. Our results show that binding potential estimates obtained using the automated method correlate highly with those obtained by trained raters using manual delineation of ROIs for frontal and temporal cortex, thalamus, and striatum (global intraclass correlation coefficient >0.8). For the three radioligands, the software yields time-activity data that are similar (within 8%) to those obtained by manual quantification, eliminates investigator-dependent variability, considerably shortens the time required for analysis and thus provides an alternative method for accurate quantification of PET data.


The Journal of Neuroscience | 2012

Higher Binding of the Dopamine D3 Receptor-Preferring Ligand [11C]-(+)-Propyl-Hexahydro-Naphtho-Oxazin in Methamphetamine Polydrug Users: A Positron Emission Tomography Study

Isabelle Boileau; Doris Payer; Sylvain Houle; Arian Behzadi; Pablo Rusjan; Junchao Tong; Diana G. Wilkins; Peter Selby; Tony P. George; Martin Zack; Yoshiaki Furukawa; Tina McCluskey; Alan A. Wilson; Stephen J. Kish

Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin ([11C]-(+)-PHNO). Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning after [11C]-(+)-PHNO. Compared with control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN; +46%; p < 0.02) and in the globus pallidus (+9%; p = 0.06) and ventral pallidum (+11%; p = 0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (approximately −4%, NS; −12% in heavy users, p = 0.01) and related to drug-use severity. The [11C]-(+)-PHNO binding ratio in D3-rich SN versus D2-rich dorsal striatum was 55% higher in MA users (p = 0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported “drug wanting.” We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users, although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.


Archives of General Psychiatry | 2009

Brain monoamine oxidase a binding in major depressive disorder: Relationship to selective serotonin reuptake inhibitor treatment, recovery and recurrence

Jeffrey H. Meyer; Alan A. Wilson; Sandra Sagrati; Laura Miler; Pablo Rusjan; Peter M. Bloomfield; Michael Clark; Julia Sacher; Aristotle N. Voineskos; Sylvain Houle

CONTEXT Highly significant elevations in regional brain monoamine oxidase A (MAO-A) binding were recently reported during major depressive episodes (MDEs) of major depressive disorder (MDD). The relationship between MAO-A levels and selective serotonin reuptake inhibitor (SSRI) treatment, recovery, and recurrence in MDD is unknown. OBJECTIVES To determine whether brain MAO-A binding changes after SSRI treatment, whether brain MAO-A binding normalizes in subjects with MDD in recovery, and whether there is a relationship between prefrontal and anterior cingulate cortex MAO-A binding in recovery and subsequent recurrence of MDE. DESIGN Case-control study. SETTING Tertiary care psychiatric hospital. PARTICIPANTS Twenty-eight healthy subjects, 16 subjects with an MDE secondary to MDD, and 18 subjects with MDD in recovery underwent carbon 11-labeled harmine positron emission tomography scans. Subjects with MDE were scanned before and after 6 weeks of SSRI treatment. All were otherwise healthy, nonsmoking, and medication free. Subjects with MDD in recovery were followed up for 6 months after MAO-A binding measurement. MAIN OUTCOME MEASURE Monoamine oxidase A V(T), an index of MAO-A density, was measured in the prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, dorsal putamen, ventral striatum, thalamus, anterior temporal cortex, midbrain, and hippocampus. RESULTS Monoamine oxidase A V(T) was significantly elevated in each brain region both during MDE and after SSRI treatment as compared with healthy controls. During recovery, MAO-A V(T) was significantly elevated in each brain region; however, those who went on to recurrence had significantly higher MAO-A V(T) in the prefrontal and anterior cingulate cortex than those who did not. CONCLUSIONS Elevated MAO-A binding after SSRI treatment indicates persistence of a monoamine-lowering process not present in health. This provides a strong conceptual rationale for continuing SSRI treatment during early remission. Greater MAO-A binding in the prefrontal and anterior cingulate cortex in subjects with MDD in recovery and its association with subsequent recurrence argue that deficient monoamine neuromodulation may persist into recovery and contribute to recurrence.


Archives of General Psychiatry | 2010

Elevated Brain Monoamine Oxidase A Binding in the Early Postpartum Period

Julia Sacher; Alan A. Wilson; Sylvain Houle; Pablo Rusjan; Sabrina Hassan; Peter M. Bloomfield; Donna E. Stewart; Jeffrey H. Meyer

CONTEXT The early postpartum period is a time of high risk for a major depressive episode (or postpartum depression), with a prevalence of 13%. During this time, there is a heightened vulnerability for low mood because postpartum blues is common. Severe postpartum blues can herald the onset of postpartum depression. The neurobiological mechanisms to explain postpartum blues and the high risk for the onset of postpartum depression in the first few weeks after delivery are unclear. Estrogen levels drop 100- to 1000-fold during the first 3 to 4 days postpartum, and changes in estrogen levels have an inverse relationship with monoamine oxidase A (MAO-A) density. However, MAO-A levels have never been measured in the early postpartum period. OBJECTIVE To determine whether brain MAO-A binding is elevated in the early postpartum period. DESIGN Case-control study. SETTING Tertiary care academic psychiatric hospital in Toronto, Ontario, Canada. PARTICIPANTS Fifteen healthy women who were 4 to 6 days postpartum and 15 healthy women who had not recently been postpartum underwent carbon 11-labeled harmine positron emission tomography scanning. All women were nonsmoking and medication free. MAIN OUTCOME MEASURE MAO-A total distribution volume, an index of MAO-A density, was measured in prefrontal cortex, anterior cingulate cortex, anterior temporal cortex, thalamus, dorsal putamen, hippocampus, and midbrain. RESULTS MAO-A total distribution volume was significantly elevated (mean, 43%) throughout all analyzed brain regions during the early postpartum period. CONCLUSIONS Elevated MAO-A levels in the early postpartum period can be interpreted as a marker of a monoamine-lowering process that contributes to the mood change of postpartum blues. Rather than a purely psychosocial model, we propose a neurobiological model of estrogen decline, followed by elevated MAO-A binding, low mood, and subsequently a period of high risk for major depressive episodes. Our model has important implications for preventing postpartum depression and for developing therapeutic strategies that target or compensate for elevated MAO-A levels during postpartum blues.


Movement Disorders | 2008

Elevated Serotonin Transporter Binding in Depressed Patients with Parkinson's Disease : A Preliminary PET Study with [11C]DASB

Isabelle Boileau; Jerry J. Warsh; Mark Guttman; Jean A. Saint-Cyr; Tina McCluskey; Pablo Rusjan; Sylvain Houle; Alan A. Wilson; Jeffrey H. Meyer; Stephen J. Kish

This study investigated whether abnormalities in serotonin transporter binding occur in Parkinsons disease (PD) patients with concurrent depression. We estimated serotonin transporter levels in seven clinically depressed early‐stage PD patients and in seven healthy matched‐control subjects during a single positron emission tomography (PET) scan with the serotonin transporter radioligand, [11C]DASB. Depressed PD patients displayed a wide‐spread increase (8–68%) in [11C]DASB specific binding outside of the striatum, which was significant in dorsolateral (37%) and prefrontal (68%) cortices. Elevated [11C]DASB binding was positively correlated with depressive symptoms but not with disease severity or duration. Compatible with recent PET/[11C]DASB findings in major depression, the present preliminary data suggest that increased [11C]DASB binding, possibly reflecting greater serotonin transporter density (up‐regulation), might be a pathological feature of depression in Parkinsons disease—and possibly a characteristic of depressive illness in general.

Collaboration


Dive into the Pablo Rusjan's collaboration.

Top Co-Authors

Avatar

Sylvain Houle

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Alan A. Wilson

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Romina Mizrahi

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Jeffrey H. Meyer

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Isabelle Boileau

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Kish

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Junchao Tong

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Ivonne Suridjan

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Peter M. Bloomfield

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge