June Goto
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by June Goto.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Qian Sun; Xinxin Chen; Jianhui Ma; Haiyong Peng; Fang Wang; Xiaojun Zha; Yanan Wang; Yanling Jing; Hongwang Yang; Rongrong Chen; Long Chang; Yu Zhang; June Goto; Hiroaki Onda; Tong Chen; Ming-Rong Wang; Youyong Lu; Han You; David J. Kwiatkowski; Hongbing Zhang
Although aerobic glycolysis (the Warburg effect) is a hallmark of cancer, key questions, including when, how, and why cancer cells become highly glycolytic, remain less clear. For a largely unknown regulatory mechanism, a rate-limiting glycolytic enzyme pyruvate kinase M2 (PKM2) isoform is exclusively expressed in embryonic, proliferating, and tumor cells, and plays an essential role in tumor metabolism and growth. Because the receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) signaling cascade is a frequently altered pathway in cancer, we explored its potential role in cancer metabolism. We identified mTOR as a central activator of the Warburg effect by inducing PKM2 and other glycolytic enzymes under normoxic conditions. PKM2 level was augmented in mouse kidney tumors due to deficiency of tuberous sclerosis complex 2 and consequent mTOR activation, and was reduced in human cancer cells by mTOR suppression. mTOR up-regulation of PKM2 expression was through hypoxia-inducible factor 1α (HIF1α)-mediated transcription activation, and c-Myc–heterogeneous nuclear ribonucleoproteins (hnRNPs)-dependent regulation of PKM2 gene splicing. Disruption of PKM2 suppressed oncogenic mTOR-mediated tumorigenesis. Unlike normal cells, mTOR hyperactive cells were more sensitive to inhibition of mTOR or glycolysis. Dual suppression of mTOR and glycolysis synergistically blunted the proliferation and tumor development of mTOR hyperactive cells. Even though aerobic glycolysis is not required for breach of senescence for immortalization and transformation, the frequently deregulated mTOR signaling during multistep oncogenic processes could contribute to the development of the Warburg effect in many cancers. Components of the mTOR/HIF1α/Myc–hnRNPs/PKM2 glycolysis signaling network could be targeted for the treatment of cancer caused by an aberrant RTK/PI3K/AKT/mTOR signaling pathway.
Proceedings of the National Academy of Sciences of the United States of America | 2011
June Goto; Delia M. Talos; Peter M. Klein; Wei Qin; Yvonne Chekaluk; Stefanie Anderl; Izabela A. Malinowska; Alessia Di Nardo; Roderick T. Bronson; Jennifer A. Chan; Harry V. Vinters; Steven G. Kernie; Frances E. Jensen; Mustafa Sahin; David J. Kwiatkowski
Tuberous sclerosis complex (TSC) is a multiorgan genetic disease in which brain involvement causes epilepsy, intellectual disability, and autism. The hallmark pathological finding in TSC is the cerebral cortical tuber and its unique constituent, giant cells. However, an animal model that replicates giant cells has not yet been described. Here, we report that mosaic induction of Tsc1 loss in neural progenitor cells in Tsc1cc Nestin-rtTA+ TetOp-cre+ embryos by doxycycline leads to multiple neurological symptoms, including severe epilepsy and premature death. Strikingly, Tsc1-null neural progenitor cells develop into highly enlarged giant cells with enlarged vacuoles. We found that the vacuolated giant cells had multiple signs of organelle dysfunction, including markedly increased mitochondria, aberrant lysosomes, and elevated cellular stress. We found similar vacuolated giant cells in human tuber specimens. Postnatal rapamycin treatment completely reversed these phenotypes and rescued the mutants from epilepsy and premature death, despite prenatal onset of Tsc1 loss and mTOR complex 1 activation in the developing brain. This TSC brain model provides insights into the pathogenesis and organelle dysfunction of giant cells, as well as epilepsy control in patients with TSC.
Human Molecular Genetics | 2011
Stefanie Anderl; Megan Freeland; David J. Kwiatkowski; June Goto
Epileptic seizures, particularly infantile spasms, are often seen in infants with tuberous sclerosis complex (TSC) soon after birth. It is feared that there are long-term developmental and cognitive consequences from ongoing, frequent epilepsy. In addition, the hallmark brain pathology of TSC, cortical tubers and giant cells are fully developed at late gestational ages. These observations have led us to examine the benefit of prenatal rapamycin in a new fetal brain model of TSC. In this Tsc1(cc) Nes-cre(+) mouse model, recombination and loss of Tsc1 in neural progenitor cells leads to brain enlargement, hyperactivation of mTOR, and neonatal death on P0 due to reduced pup-maternal interaction. A single dose of prenatal rapamycin given to pregnant dams (1 mg/kg, subcutaneous) rescued the lethality of mutant mice. This one dose of prenatal rapamycin treatment reduced hyperactivation of the mTOR pathway in the mutant brain without causing apparent pregnancy loss. Continued postnatal rapamycin beginning at day 8 extended the survival of these mice to a median of 12 days with complete suppression of hyperactive mTOR. However, the rapamycin-treated mutants developed enlarged brains with an increased number of brain cells, displaying marked runting and developmental delay. These observations demonstrate the therapeutic benefit and limitations of prenatal rapamycin in a prenatal-onset brain model of TSC. Our data also suggest the possibility and limitations of this approach for TSC infants and mothers.
Human Molecular Genetics | 2014
Alessia Di Nardo; Mary H. Wertz; Erica Kwiatkowski; Peter Tsai; Jarrett D. Leech; Emily Greene-Colozzi; June Goto; Pelin Dilsiz; Delia M. Talos; Clary B. Clish; David J. Kwiatkowski; Mustafa Sahin
Tuberous sclerosis complex (TSC) is a disorder arising from mutation in the TSC1 or TSC2 gene, characterized by the development of hamartomas in various organs and neurological manifestations including epilepsy, intellectual disability and autism. TSC1/2 protein complex negatively regulates the mammalian target of rapamycin complex 1 (mTORC1) a master regulator of protein synthesis, cell growth and autophagy. Autophagy is a cellular quality-control process that sequesters cytosolic material in double membrane vesicles called autophagosomes and degrades it in autolysosomes. Previous studies in dividing cells have shown that mTORC1 blocks autophagy through inhibition of Unc-51-like-kinase1/2 (ULK1/2). Despite the fact that autophagy plays critical roles in neuronal homeostasis, little is known on the regulation of autophagy in neurons. Here we show that unlike in non-neuronal cells, Tsc2-deficient neurons have increased autolysosome accumulation and autophagic flux despite mTORC1-dependent inhibition of ULK1. Our data demonstrate that loss of Tsc2 results in autophagic activity via AMPK-dependent activation of ULK1. Thus, in Tsc2-knockdown neurons AMPK activation is the dominant regulator of autophagy. Notably, increased AMPK activity and autophagy activation are also found in the brains of Tsc1-conditional mouse models and in cortical tubers resected from TSC patients. Together, our findings indicate that neuronal Tsc1/2 complex activity is required for the coordinated regulation of autophagy by AMPK. By uncovering the autophagy dysfunction associated with Tsc2 loss in neurons, our work sheds light on a previously uncharacterized cellular mechanism that contributes to altered neuronal homeostasis in TSC disease.
Human Molecular Genetics | 2011
Amy J. Malhowski; Haider Hira; Sarah Bashiruddin; Rod R. Warburton; June Goto; Blanton Robert; David J. Kwiatkowski; Geraldine A. Finlay
Constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), a key kinase complex that regulates cell size and growth, is observed with inactivating mutations of either of the tuberous sclerosis complex (TSC) genes, Tsc1 and Tsc2. Tsc1 and Tsc2 are highly expressed in cardiovascular tissue but their functional role there is unknown. We generated a tissue-specific knock-out of Tsc1, using a conditional allele of Tsc1 and a cre recombinase allele regulated by the smooth muscle protein-22 (SM22) promoter (Tsc1c/cSM22cre+/-) to constitutively activate mTOR in cardiovascular tissue. Significant gene recombination (∼80%) occurred in the heart by embryonic day (E) 15, and reduction in Tsc1 expression with increased levels of phosphorylated S6 kinase (S6K) and S6 was observed, consistent with constitutive activation of mTORC1. Cardiac hypertrophy was evident by E15 with post-natal progression to heart weights of 142 ± 24 mg in Tsc1c/cSM22cre+/- mice versus 65 ± 14 mg in controls (P < 0.01). Median survival of Tsc1c/cSM22cre+/- mice was 24 days, with none surviving beyond 6 weeks. Pathologic and echocardiographic analysis revealed severe biventricular hypertrophy without evidence of fibrosis or myocyte disarray, and significant reduction in the left ventricular end-diastolic diameter (P < 0.001) and fractional index (P < 0.001). Inhibition of mTORC1 by rapamycin resulted in prolonged survival of Tsc1c/cSM22cre+/- mice, with regression of ventricular hypertrophy. These data support a critical role for the Tsc1/Tsc2-mTORC1-S6K axis in the normal development of cardiovascular tissue and also suggest possible therapeutic potential of rapamycin in cardiac disorders where pathologic mTORC1 activation occurs.
Human Molecular Genetics | 2009
Kristen Pollizzi; Izabela Malinowska-Kolodziej; Cheryl Doughty; Charles Betz; Jian Ma; June Goto; David J. Kwiatkowski
Tuberous sclerosis complex (TSC) is a tumor suppressor gene syndrome in which hamartomas develop in multiple organ systems. Knockout and conditional alleles of Tsc1 and Tsc2 have been previously reported. Here, we describe the generation of a novel hypomorphic allele of Tsc2 (del3), in which exon 3, encoding 37 amino acids near the N terminus of tuberin, is deleted. Embryos homozygous for the del3 allele survive until E13.5, 2 days longer than Tsc2 null embryos. Embryos die from underdevelopment of the liver, deficient hematopoiesis, aberrant vascular development and hemorrhage. Mice that are heterozygous for the del3 allele have a markedly reduced kidney tumor burden in comparison with conventional Tsc2(+/-) mice. Murine embryo fibroblast (MEF) cultures that are homozygous for the del3 allele express mutant tuberin at low levels, and show enhanced activation of mTORC1, similar to Tsc2 null MEFs. Furthermore, the mutant cells show prominent reduction in the activation of AKT. Similar findings were made in the analysis of homozygous del3 embryo lysates. Tsc2-del3 demonstrates GTPase activating protein activity comparable to that of wild-type Tsc2 in a functional assay. These findings indicate that the del3 allele is a hypomorphic allele of Tsc2 with partial function due to reduced expression, and highlight the consistency of AKT downregulation when Tsc1/Tsc2 function is reduced. Tsc2-del3 mice also serve as a model for hypomorphic TSC2 missense mutations reported in TSC patients.
Behavior Genetics | 2013
Peter Tsai; Emily Greene-Colozzi; June Goto; Stefanie Anderl; David J. Kwiatkowski; Mustafa Sahin
Mammalian target of rapamycin (mTOR) signaling has been shown to be deregulated in a number of genetic, neurodevelopmental disorders including Tuberous Sclerosis Complex, Neurofibromatosis, Fragile X, and Rett syndromes. As a result, mTOR inhibitors, such as rapamycin and its analogs, offer potential therapeutic avenues for these disorders. Some of these disorders—such as Tuberous Sclerosis Complex—can be diagnosed prenatally. Thus, prenatal administration of these inhibitors could potentially prevent the development of the devastating symptoms associated with these disorders. To assess the possible detrimental effects of prenatal rapamycin treatment, we evaluated both early and late behavioral effects of a single rapamycin treatment at embryonic day 16.5 in wildtype C57Bl/6 mice. This treatment adversely impacted early developmental milestones as well as motor function in adult animals. Rapamycin also resulted in anxiety-like behaviors during both early development and adulthood but did not affect adult social behaviors. Together, these results indicate that a single, prenatal rapamycin treatment not only adversely affects early postnatal development but also results in long lasting negative effects, persisting into adulthood. These findings are of importance in considering prenatal administration of rapamycin and related drugs in the treatment of patients with neurogenetic, neurodevelopmental disorders.
PLOS ONE | 2013
Shilpa Prabhakar; June Goto; Xuan Zuang; Miguel Sena-Esteves; Roderick T. Bronson; Jillian Brockmann; Davide Gianni; Gregory R. Wojtkiewicz; John W. Chen; Anat Stemmer-Rachamimov; David J. Kwiatkowski; Xandra O. Breakefield
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder due to mutations in either TSC1 or TSC2 that affects many organs with hamartomas and tumors. TSC-associated brain lesions include subependymal nodules, subependymal giant cell astrocytomas and tubers. Neurologic manifestations in TSC comprise a high frequency of mental retardation and developmental disorders including autism, as well as epilepsy. Here, we describe a new mouse model of TSC brain lesions in which complete loss of Tsc1 is achieved in multiple brain cell types in a stochastic pattern. Injection of an adeno-associated virus vector encoding Cre recombinase into the cerebral ventricles of mice homozygous for a Tsc1 conditional allele on the day of birth led to reduced survival, and pathologic findings of enlarged neurons, cortical heterotopias, subependymal nodules, and hydrocephalus. The severity of clinical and pathologic findings as well as survival was shown to be dependent upon the dose and serotype of Cre virus injected. Although several other models of TSC brain disease exist, this model is unique in that the pathology reflects a variety of TSC-associated lesions involving different numbers and types of cells. This model provides a valuable and unique addition for therapeutic assessment.
Journal of Biological Chemistry | 2015
Zhongdong Hu; Ying Wang; Fuqiang Huang; Rongrong Chen; Chunjia Li; Fang Wang; June Goto; David J. Kwiatkowski; Joanna Wdzieczak-Bakala; Pengfei Tu; Jianmiao Liu; Xiaojun Zha; Hongbing Zhang
Background: mTOR signaling pathway is frequently activated in cancer. Results: Hyperactivation of mTOR stimulates STAT3/NF-κB-BEX2-VEGF signaling cascade. Conclusion: mTOR promotes tumorigenesis through up-regulation of STAT3/NF-κB-BEX2-VEGF signaling axis. Significance: The components in this mTOR-STAT3/NF-κB-BEX2-VEGF signaling cascade are candidate targets for the treatment of cancers associated with aberrant mTOR signaling. Frequent alteration of upstream proto-oncogenes and tumor suppressor genes activates mechanistic target of rapamycin (mTOR) and causes cancer. However, the downstream effectors of mTOR remain largely elusive. Here we report that brain-expressed X-linked 2 (BEX2) is a novel downstream effector of mTOR. Elevated BEX2 in Tsc2−/− mouse embryonic fibroblasts, Pten−/− mouse embryonic fibroblasts, Tsc2-deficient rat uterine leiomyoma cells, and brains of neuronal specific Tsc1 knock-out mice were abolished by mTOR inhibitor rapamycin. Furthermore, BEX2 was also increased in the liver of a hepatic specific Pten knock-out mouse and the kidneys of Tsc2 heterozygous deletion mice, and a patient with tuberous sclerosis complex (TSC). mTOR up-regulation of BEX2 was mediated in parallel by both STAT3 and NF-κB. BEX2 was involved in mTOR up-regulation of VEGF production and angiogenesis. Depletion of BEX2 blunted the tumorigenesis of cells with activated mTOR. Therefore, enhanced STAT3/NF-κB-BEX2-VEGF signaling pathway contributes to hyperactive mTOR-induced tumorigenesis. BEX2 may be targeted for the treatment of the cancers with aberrantly activated mTOR signaling pathway.
Neurobiology of Disease | 2015
Shilpa Prabhakar; Xuan Zhang; June Goto; Sangyeul Han; Charles P. Lai; Roderick T. Bronson; Miguel Sena-Esteves; Vijaya Ramesh; Anat Stemmer-Rachamimov; David J. Kwiatkowski; Xandra O. Breakefield
We examined the potential benefit of gene therapy in a mouse model of tuberous sclerosis complex (TSC) in which there is embryonic loss of Tsc1 (hamartin) in brain neurons. An adeno-associated virus (AAV) vector (serotype rh8) expressing a tagged form of hamartin was injected into the cerebral ventricles of newborn pups with the genotype Tsc1(cc) (homozygous for a conditional floxed Tsc1 allele) SynI-cre(+), in which Tsc1 is lost selectively in neurons starting at embryonic day 12. Vector-treated Tsc1(cc)SynIcre(+) mice showed a marked improvement in survival from a mean of 22 days in non-injected mice to 52 days in AAV hamartin vector-injected mice, with improved weight gain and motor behavior in the latter. Pathologic studies showed normalization of neuron size and a decrease in markers of mTOR activation in treated as compared to untreated mutant littermates. Hence, we show that gene replacement in the brain is an effective therapeutic approach in this mouse model of TSC1. Our strategy for gene therapy has the advantages that therapy can be achieved from a single application, as compared to repeated treatment with drugs, and that AAV vectors have been found to have minimal to no toxicity in clinical trials for other neurologic conditions. Although there are many additional issues to be addressed, our studies support gene therapy as a useful approach in TSC patients.