Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roderick T. Bronson is active.

Publication


Featured researches published by Roderick T. Bronson.


Cell | 1997

Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts

Toshihisa Komori; Hideshi Yagi; Shintaro Nomura; Akira Yamaguchi; Kota S. Sasaki; Kenji Deguchi; Yoji Shimizu; Roderick T. Bronson; Y.-H Gao; Masahiko Inada; M Sato; Ryuji Okamoto; Yukihiko Kitamura; Shusaku Yoshiki; Tadamitsu Kishimoto

A transcription factor, Cbfa1, which belongs to the runt-domain gene family, is expressed restrictively in fetal development. To elucidate the function of Cbfa1, we generated mice with a mutated Cbfa1 locus. Mice with a homozygous mutation in Cbfa1 died just after birth without breathing. Examination of their skeletal systems showed a complete lack of ossification. Although immature osteoblasts, which expressed alkaline phophatase weakly but not Osteopontin and Osteocalcin, and a few immature osteoclasts appeared at the perichondrial region, neither vascular nor mesenchymal cell invasion was observed in the cartilage. Therefore, our data suggest that both intramembranous and endochondral ossification were completely blocked, owing to the maturational arrest of osteoblasts in the mutant mice, and demonstrate that Cbfa1 plays an essential role in osteogenesis.


Nature | 1999

p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development.

Annie Yang; Ronen Schweitzer; Deqin Sun; Mourad Kaghad; Nancy Walker; Roderick T. Bronson; Cliff Tabin; Arlene H. Sharpe; Daniel Caput; Christopher P. Crum; Frank McKeon

The p63 gene, a homologue of the tumour-suppressor p53 (refs 1–5), is highly expressed in the basal or progenitor layers of many epithelial tissues. Here we report that mice homozygous for a disrupted p63 gene have major defects in their limb, craniofacial and epithelial development. p63 is expressed in the ectodermal surfaces of the limb buds, branchial arches and epidermal appendages, which are all sites of reciprocal signalling that direct morphogenetic patterning of the underlying mesoderm. The limb truncations are due to a failure to maintain the apical ectodermal ridge, a stratified epithelium, essential for limb development. The embryonic epidermis of p63 −/− mice undergoes an unusual process of non-regenerative differentiation, culminating in a striking absence of all squamous epithelia and their derivatives, including mammary, lacrymal and salivary glands. Taken together, our results indicate that p63 is critical for maintaining the progenitor-cell populations that are necessary to sustain epithelial development and morphogenesis.


Current Biology | 1994

Tumor spectrum analysis in p53-mutant mice

Tyler Jacks; Lee Remington; Bart O. Williams; Earlene M. Schmitt; Schlomit Halachmi; Roderick T. Bronson; Robert A. Weinberg

BACKGROUND The p53 tumor suppressor gene is mutated in a large percentage of human malignancies, including tumors of the colon, breast, lung and brain. Individuals who inherit one mutant allele of p53 are susceptible to a wide range of tumor types. The gene encodes a transcriptional regulator that may function in the cellular response to DNA damage. The construction of mouse strains carrying germline mutations of p53 facilitates analysis of the function of p53 in normal cells and tumorigenesis. RESULTS In order to study the effects of p53 mutation in vivo, we have constructed a mouse strain carrying a germline disruption of the gene. This mutation removes approximately 40% of the coding capacity of p53 and completely eliminates synthesis of p53 protein. As observed previously for a different germline mutation of p53, animals homozygous for this p53 deletion mutation are viable but highly predisposed to malignancy. Heterozygous animals also have an increased cancer risk, although the distribution of tumor types in these animals differs from that in homozygous mutants. In most cases, tumorigenesis in heterozygous animals is accompanied by loss of the wild-type p53 allele. CONCLUSION We reaffirm that p53 function is not required for normal mouse development and conclude that p53 status can strongly influence tumor latency and tissue distribution.


Cell | 2005

Identification of Bronchioalveolar Stem Cells in Normal Lung and Lung Cancer

Carla F. Kim; Erica L. Jackson; Amber Woolfenden; Sharon Lawrence; Imran Babar; Sinae Vogel; Denise Crowley; Roderick T. Bronson; Tyler Jacks

Injury models have suggested that the lung contains anatomically and functionally distinct epithelial stem cell populations. We have isolated such a regional pulmonary stem cell population, termed bronchioalveolar stem cells (BASCs). Identified at the bronchioalveolar duct junction, BASCs were resistant to bronchiolar and alveolar damage and proliferated during epithelial cell renewal in vivo. BASCs exhibited self-renewal and were multipotent in clonal assays, highlighting their stem cell properties. Furthermore, BASCs expanded in response to oncogenic K-ras in culture and in precursors of lung tumors in vivo. These data support the hypothesis that BASCs are a stem cell population that maintains the bronchiolar Clara cells and alveolar cells of the distal lung and that their transformed counterparts give rise to adenocarcinoma. Although bronchiolar cells and alveolar cells are proposed to be the precursor cells of adenocarcinoma, this work points to BASCs as the putative cells of origin for this subtype of lung cancer.


Cell | 1991

Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene

Victor L. J. Tybulewicz; Camila E. Crawford; Peter K. Jackson; Roderick T. Bronson; Richard C. Mulligan

The c-abl proto-oncogene, which encodes a cytoplasmic protein-tyrosine kinase, is expressed throughout murine gestation and ubiquitously in adult mouse tissues. However, its levels are highest in thymus, spleen, and testes. To examine the in vivo role of c-abl, the gene was disrupted in embryonic stem cells, and the resulting genetically modified cells were used to establish a mouse strain carrying the mutation. Most mice homozygous for the c-abl mutation became runted and died 1 to 2 weeks after birth. In addition, many showed thymic and splenic atrophy and a T and B cell lymphopenia.


Cell | 2008

Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters

Andrea Ventura; Amanda G. Young; Monte M. Winslow; Laura Lintault; Alexander Meissner; Stefan J. Erkeland; Jamie J. Newman; Roderick T. Bronson; Denise Crowley; James R. Stone; Rudolf Jaenisch; Phillip A. Sharp; Tyler Jacks

miR-17 approximately 92, miR-106b approximately 25, and miR-106a approximately 363 belong to a family of highly conserved miRNA clusters. Amplification and overexpression of miR-1792 is observed in human cancers, and its oncogenic properties have been confirmed in a mouse model of B cell lymphoma. Here we show that mice deficient for miR-17 approximately 92 die shortly after birth with lung hypoplasia and a ventricular septal defect. The miR-17 approximately 92 cluster is also essential for B cell development. Absence of miR-17 approximately 92 leads to increased levels of the proapoptotic protein Bim and inhibits B cell development at the pro-B to pre-B transition. Furthermore, while ablation of miR-106b approximately 25 or miR-106a approximately 363 has no obvious phenotypic consequences, compound mutant embryos lacking both miR-106b approximately 25 and miR-17 approximately 92 die at midgestation. These results provide key insights into the physiologic functions of this family of microRNAs and suggest a link between the oncogenic properties of miR-17 approximately 92 and its functions during B lymphopoiesis and lung development.


Cell | 1995

Cyclin D1 provides a link between development and oncogenesis in the retina and breast

Piotr Sicinski; Joana Liu Donaher; Susan B. Parker; Tiansen Li; Amin Fazeli; Humphrey Gardner; Sandra Z. Haslam; Roderick T. Bronson; Stephen J. Elledge; Robert A. Weinberg

Mice lacking cyclin D1 have been generated by gene targeting in embryonic stem cells. Cyclin D1-deficient animals develop to term but show reduced body size, reduced viability, and symptoms of neurological impairment. Their retinas display a striking reduction in cell number due to proliferative failure during embryonic development. In situ hybridization studies of normal mouse embryos revealed an extremely high level of cyclin D1 in the retina, suggesting a special dependence of this tissue on cyclin D1. In adult mutant females, the breast epithelial compartment fails to undergo the massive proliferative changes associated with pregnancy despite normal levels of ovarian steroid hormones. Thus, steroid-induced proliferation of mammary epithelium during pregnancy may be driven through cyclin D1.


Cell | 2006

Genomic instability and aging-like phenotype in the absence of mammalian SIRT6

Raul Mostoslavsky; Katrin F. Chua; David B. Lombard; Wendy W. Pang; Miriam R. Fischer; Lionel Gellon; Pingfang Liu; Gustavo Mostoslavsky; Sonia Franco; Michael M. Murphy; Kevin D. Mills; Parin Patel; Joyce T. Hsu; Andrew L. Hong; Ethan Ford; Hwei Ling Cheng; Caitlin Kennedy; Nomeli P. Nunez; Roderick T. Bronson; David Frendewey; Wojtek Auerbach; David M. Valenzuela; Margaret Karow; Michael O. Hottiger; Stephen D. Hursting; J. Carl Barrett; Leonard Guarente; Richard C. Mulligan; Bruce Demple; George D. Yancopoulos

The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.


Nature | 2001

Somatic activation of the K-ras oncogene causes early onset lung cancer in mice.

Leisa Johnson; Kim L. Mercer; Doron C. Greenbaum; Roderick T. Bronson; Denise Crowley; David A. Tuveson; Tyler Jacks

About 30% of human tumours carry ras gene mutations. Of the three genes in this family (composed of K-ras, N-ras and H-ras), K-ras is the most frequently mutated member in human tumours, including adenocarcinomas of the pancreas (∼70–90% incidence), colon (∼50%) and lung (∼25–50%). To constuct mouse tumour models involving K-ras, we used a new gene targeting procedure to create mouse strains carrying oncogenic alleles of K-ras that can be activated only on a spontaneous recombination event in the whole animal. Here we show that mice carrying these mutations were highly predisposed to a range of tumour types, predominantly early onset lung cancer. This model was further characterized by examining the effects of germline mutations in the tumour suppressor gene p53, which is known to be mutated along with K-ras in human tumours. This approach has several advantages over traditional transgenic strategies, including that it more closely recapitulates spontaneous oncogene activation as seen in human cancers.


Nature | 2000

p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours.

Annie Yang; Nancy Walker; Roderick T. Bronson; Mourad Kaghad; Mariëtte A. Oosterwegel; Jacques Bonnin; Christine Vagner; Helene Bonnet; Pieter Dikkes; Arlene H. Sharpe; Frank McKeon; Daniel Caput

p73 (ref. 1) has high homology with the tumour suppressor p53 (refs 2,3,4), as well as with p63, a gene implicated in the maintenance of epithelial stem cells. Despite the localization of the p73 gene to chromosome 1p36.3, a region of frequent aberration in a wide range of human cancers, and the ability of p73 to transactivate p53 target genes, it is unclear whether p73 functions as a tumour suppressor. Here we show that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways. In contrast to p53-deficient mice, however, those lacking p73 show no increased susceptibility to spontaneous tumorigenesis. We report the mechanistic basis of the hippocampal dysgenesis and the loss of pheromone responses, and show that new, potentially dominant-negative, p73 variants are the predominant expression products of this gene in developing and adult tissues. Our data suggest that there is a marked divergence in the physiological functions of the p53 family members, and reveal unique roles for p73 in neurogenesis, sensory pathways and homeostatic control.

Collaboration


Dive into the Roderick T. Bronson's collaboration.

Top Co-Authors

Avatar

Tyler Jacks

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Denise Crowley

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Muriel T. Davisson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacqueline A. Lees

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard O. Hynes

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge