Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where June W. Palmer is active.

Publication


Featured researches published by June W. Palmer.


Anesthesiology | 2000

Bupivacaine Inhibits Acylcarnitine Exchange in Cardiac Mitochondria

Guy Weinberg; June W. Palmer; Timothy R. VadeBoncouer; Mikko B. Zuechner; Guy Edelman; Charles L. Hoppel

Background The authors previously reported that secondary carnitine deficiency may sensitize the heart to bupivacaine-induced arrhythmias. In this study, the authors tested whether bupivacaine inhibits carnitine metabolism in cardiac mitochondria. Methods Rat cardiac interfibrillar mitochondria were prepared using a differential centrifugation technique. Rates of adenosine diphosphate–stimulated (state III) and adenosine diphosphate–limited (state IV) oxygen consumption were measured using a Clark electrode, using lipid or nonlipid substrates with varying concentrations of a local anesthetic. Results State III respiration supported by the nonlipid substrate pyruvate (plus malate) is minimally affected by bupivacaine concentrations up to 2 mM. Lower concentrations of bupivacaine inhibited respiration when the available substrates were palmitoylcarnitine or acetylcarnitine; bupivacaine concentration causing 50% reduction in respiration (IC50 ± SD) was 0.78 ± 0.17 mM and 0.37 ± 0.03 mM for palmitoylcarnitine and acetylcarnitine, respectively. Respiration was equally inhibited by bupivacaine when the substrates were palmitoylcarnitine alone, or palmitoyl–CoA plus carnitine. Bupivacaine (IC50 = 0.26 ± 0.06 mM) and etidocaine (IC50 = 0.30 ± 0.12 mM) inhibit carnitine-stimulated pyruvate oxidation similarly, whereas the lidocaine IC50 is greater by a factor of roughly 5, (IC50 = 1.4 ± 0.26 mM), and ropivacaine is intermediate, IC50 = 0.5 ± 0.28 mM. Conclusions Bupivacaine inhibits mitochondrial state III respiration when acylcarnitines are the available substrate. The substrate specificity of this effect rules out bupivacaine inhibition of carnitine palmitoyl transferases I and II, carnitine acetyl- transferase, and fatty acid &bgr;-oxidation. The authors hypothesize that differential inhibition of carnitine-stimulated pyruvate oxidation by various local anesthetics supports the clinical relevance of inhibition of carnitine–acylcarnitine translocase by local anesthetics with a cardiotoxic profile.


Biological Psychiatry | 1989

Are disturbances in lipid-protein interactions by phospholipase-A2 a predisposing factor in affective illness?

Joseph R. Hibbeln; June W. Palmer; John M. Davis

Current theories of affective disorders do not account for many of the biological markers replicated in patient studies. We link many biological findings in a reasonable physiological relationship, compatible with mechanisms of action of pharmacological and electroshock therapies for depression. We propose that excessive phospholipase-A2 (PLA2) activity disrupts membrane fluidity, composition, and therefore, the activity, of membrane-dependent proteins. Similar disruptions in these proteins are documented in depressed patients and can be accounted for by excessive PLA2 activity. This paradigm accounts for disturbances in the activity of Na-K-ATPase, beta2- and alpha2-adrenergic receptors, MAO, norepinephrine and serotonin uptake, and imipramine binding. Disturbances in other membrane-dependent proteins, tyrosine and tryptophan hydroxylase, can explain the biogenic amine hypothesis. Inhibition of glucocorticoid receptor and TRH receptor binding to their respective ligands by PLA2 may explain patient nonsuppression in the Dexamethasone Suppression Test and poor response in the TRH stimulation test. Physiological regulators of PLA2 activity; calcium, cortisol, estrogen, progesterone, and PGE2 are documented abnormalities in some patients with affective disorders and consistent with excessive PLA2 activity. Thus, postpartum depression and premenstrual tension syndrome may be described in the paradigm. The mechanisms of action of tricyclic antidepressants, lithium, electroconvulsive shock, and some novel antimanic agents can be described in terms of alterations of PLA2 activity. Interestingly, ethanol perturbs membrane fluidity and membrane-bound enzymes in a manner similar to excessive PLA2 activity. A hereditary factor predisposing patients to affective disorders may be a gene defect at either PLA2 or in its regulation.


Journal of Molecular and Cellular Cardiology | 1987

Alterations in phospholipid metabolism in the globally ischemic rat heart: Emphasis on phosphoinositide specific phospholipase C activity

Dorie W. Schwertz; Jenny Halverson; Thomas Isaacson; Harold Feinberg; June W. Palmer

The effect of global ischemia on myocardial ventricular membrane phospholipids was evaluated using a modified Langendorff preparation. Isolated rat hearts were perfused at 37 degrees C with oxygenated Krebs Ringer solution or rendered ischemic by cessation of perfusion (10 min to 3 h). Longer periods of ischemia were assessed by incubating preperfused (10 min) intact hearts in non-oxygenated Krebs (37 degrees C) for 6 to 18 h. Ischemia-induced alterations in phosphatidylinositol levels and phosphoinositide-specific phospholipase C (PI PLC) activity were assessed in detail, since inositol phospholipids and PI-PLC play putative roles in the regulation of cell function and Ca2+ homeostasis. Decreases in major membrane phospholipids (phosphatidylcholine, phosphatidylserine, cardiolipin and sphingomyelin) were demonstrated after long ischemic periods (6 to 18 h). While periods of ischemia (3 h or less) induced no change in structural phospholipids, an elevation in lysophosphatidylcholine and free fatty acids was found by 1 h. Notably a significant increase in phosphatidylinositol content and an accompanying decrease in cytosolic PI PLC activity was detected by 30 mins of ischemia. Reduced enzymic activity was not due to altered in vitro activation or deactivation of PI-PLC, to a change in the Ca2+ requirement of the enzyme, or to translocation of the enzyme from the cytosol to a membrane fraction. The isolated rat heart made globally ischemic for 30 mins under conditions described for this investigation shows signs of irreversible injury i.e. increased cell Ca2+ content and inability to initiate and maintain rhythmic contraction upon reperfusion. Therefore, it is possible that altered phosphoinositide metabolism may contribute to the evolution of ischemia-elicited irreversible cell injury.


Archives of Biochemistry and Biophysics | 1987

Characterization of phospholipase C-mediated phosphatidylinositol degradation in rat heart ventricle☆

Dorie W. Schwertz; Jennifer B. Halverson; June W. Palmer; Harold Feinberg

Phosphoinositide-specific phospholipase C (PI-PLC) activity was investigated in the rat heart ventricle. Incubation of ventricle homogenate or 100,000g supernatant fraction with [3H]myoinositol or [3H]arachidonate-labeled phosphatidylinositol in the presence of Ca2+ resulted in a decrease in phosphatidylinositol with a concomitant increase in water-soluble [3H]inositol phosphate or [3H]diglyceride, respectively. Total overt homogenate PI-PLC activity could be accounted for in the supernatant fraction. Neutral, zwitterionic, cationic, or anionic detergents did not unmask membrane-associated activity. While cytosolic phospholipase C was active against a pure phosphatidylinositol substrate in the presence of Ca2+, no hydrolytic activity was detected when phosphatidylinositol was presented as a component (4-5%) of a mixture of phospholipids. However, addition of deoxycholate to the incubation mixture (pH 6.5, Ca2+ 10(-3) M) containing mixed phospholipids resulted in the exclusive hydrolysis of inositol phospholipids. Ventricular supernatant phospholipase C-mediated phosphatidylinositol degradation has a sharp pH optimum at 5.5 and a specific requirement for Ca2+. Activity is maximal at 1 to 2 X 10(-3) M Ca2+, with inhibition occurring at higher levels. Under optimized conditions phosphatidylinositol is hydrolyzed at a rate of 20-25 nmol/min/mg protein. Multivalent cations inhibit Ca2+-dependent PI-PLC activity while monovalent cations and anions have no effect. There is no apparent selectivity for specific fatty acid moieties on phosphatidylinositol. Soluble PI-PLC is inhibited by sulfhydryl reagents, neomycin, mepacrine, trifluoperazine, and propranolol. Chlorpromazine, dibucaine, and tetracaine exert a biphasic influence, stimulating at lower and inhibiting at higher concentrations.


Anesthesiology | 2006

Adding bupivacaine to high-potassium cardioplegia improves function and reduces cellular damage of rat isolated hearts after prolonged, cold storage

James D. Ross; Richard Ripper; William R. Law; Malek G. Massad; Patricia Murphy; Lucas Edelman; Beth A. Conlon; Douglas L. Feinstein; June W. Palmer; Guido DiGregorio; Guy Weinberg

Background: Bupivacaine retards myocardial acidosis during ischemia. The authors measured function of rat isolated hearts after prolonged storage to determine whether bupivacaine improves cardiac protection compared with standard cardioplegia alone. Methods: After measuring cardiac function on a Langendorff apparatus, hearts were perfused with cardioplegia alone (controls), cardioplegia containing 500 μm bupivacaine, or cardioplegia containing 2 mm lidocaine; were stored at 4°C for 12 h; and were then reperfused. Heart rate and left ventricular developed pressures were measured for 60 min. Maximum positive rate of change in ventricular pressure, oxygen consumption, and lactate dehydrogenase release were also measured. Results: All bupivacaine-treated, four of five lidocaine-treated, and no control hearts beat throughout the 60-min recovery period. Mean values of heart rate, left ventricular developed pressure, maximum positive rate of change in ventricular pressure, rate–pressure product, and efficiency in bupivacaine-treated hearts exceeded those of the control group (P < 0.001 at 60 min for all). Mean values of the lidocaine group were intermediate. Oxygen consumption of the control group exceeded the other groups early in recovery, but not at later times. Lactate dehydrogenase release from the bupivacaine group was less than that from the control group (P < 0.001) but did not differ from baseline. Conclusions: Adding bupivacaine to a depolarizing cardioplegia solution reduces cell damage and improves cardiac function after prolonged storage. Metabolic inhibition may contribute to this phenomenon, which is not entirely explained by sodium channel blockade.


Archives of Biochemistry and Biophysics | 1987

Hormonal effects on mitochondrial respiration: potential role of endogenous lipolytic activities.

Sharon Crost; Monica K. Martin; June W. Palmer

Hormonal effects on heart mitochondrial metabolism are investigated by comparing respiratory rates, Ca2+ uptake capacity, and lipolytic activities of mitochondria isolated from control rats to those of mitochondria isolated from thyroparathyroidectomized animals. Two biochemically and morphologically distinct populations of heart mitochondria are prepared--one derived from the region of the cell directly beneath the sarcolemma (subsarcolemmal mitochondria), the other originally between the myofibrils (interfibrillar mitochondria). Subsarcolemmal mitochondria isolated from normal rat cardiac tissue have both lower respiratory rates and Ca2+ uptake capacity than do interfibrillar mitochondria. However, when these mitochondrial populations are isolated from hearts from thyroparathyroidectomized rats, there is a selective increase in the maximal ability of the subsarcolemmal mitochondria to accumulate Ca2+, which is accompanied by a proportionate increase in their maximal respiratory rates. Neither Ca2+ uptake capacity nor respiratory rates are similarly increased in the interfibrillar mitochondria. Cytochrome contents and mitochondrial protein recoveries are not significantly changed in either of these mitochondrial preparations. The relationship between these selective increases in respiratory properties of the subsarcolemmal mitochondria to endogenous lipolytic activities is also investigated. It was previously demonstrated that, in the absence of Ca2+, both the rate and extent of formation of free fatty acids from endogenous phospholipids is greater in subsarcolemmal than interfibrillar mitochondria (J. W. Palmer et al. (1981) Arch. Biochem. Biophys. 211, 674-682). In this study it is shown that lipolysis is also more sustained in the subsarcolemmal mitochondria when Ca2+ is added. In the subsarcolemmal mitochondria isolated from thyroparathyroidectomized rats, however, the rates of release of stearic acid and oleic acid are reduced in both the presence and absence of Ca2+. In the presence of added Ca2+, the rate of release of arachidonic acid is also decreased compared to control subsarcolemmal mitochondria, suggesting that the expressed activity of Ca2+-activated phospholipase A2 is lower in those mitochondria isolated from the thyroparathyroidectomized animals, in which respiratory rates and Ca2+ uptake capacity are increased.


Journal of Biological Chemistry | 1980

The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria.

Michael C. Beatrice; June W. Palmer; Douglas R. Pfeiffer


Journal of Biological Chemistry | 2003

Peroxisome Proliferator-activated Receptor γ Thiazolidinedione Agonists Increase Glucose Metabolism in Astrocytes

Cinzia Dello Russo; Vitaliy Gavrilyuk; Guy Weinberg; Angeles Almeida; Juan P. Bolanos; June W. Palmer; Dale A. Pelligrino; Elena Galea; Douglas L. Feinstein


Anesthesiology | 1998

A CELL CULTURE MODEL OF LOCAL ANESTHETIC NEUROTOXICITY

Guy Weinberg; Timothy R. VadeBoncouer; X. Wang; June W. Palmer


Anesthesiology | 2000

Room A, 10/16/2000 9: 00 AM - 11: 00 AM (PS) Cocaine Inhibits Lipid Supported Respiration in Cardiac Mitochondria A-841

Guy Weinberg; Miriam Schoepf; Richard Ripper; June W. Palmer

Collaboration


Dive into the June W. Palmer's collaboration.

Top Co-Authors

Avatar

Guy Weinberg

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Timothy R. VadeBoncouer

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Charles L. Hoppel

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Dorie W. Schwertz

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Douglas L. Feinstein

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Harold Feinberg

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Richard Ripper

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Angeles Almeida

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Beth A. Conlon

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Cinzia Dello Russo

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge